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On grouops with formational subnormal or

self-normalizing subgroups

I. L. Sokhor

Abstract

We establish the structure of finite groups with F-subnormal or self-

normalizing primary cyclic subgroups in case F is a subgroup-closed

saturated superradical formation containing all nilpotent groups.

Keywords: finite group, primary cyclic subgroup, derived subgroup,
residual, subnormal subgroup, abnormal subgroup.

1 Introduction

All groups in this paper are finite. We use the standard notation and termi-
nology of [1–3].

Let F be a formation, and let G be a group. A subgroup H is called
F-subnormal if either G = H or there is a chain of subgroups

H = H0 < · H1 < · . . . < · Hn = G

such that Hi/(Hi−1)Hi
∈ F for all i, this is equivalent to HF

i ≤ Hi−1. Here
AB =

⋂
b∈B Ab is the core of a subgroup A in a group B, Hi−1 < ·Hi denotes

that Hi−1 is a maximal subgroup of a group Hi. A subgroup H of a group G
is said to be F-abnormal in G if L/KL 6∈ F for all subgroups K and L such
that H ≤ K < ·L ≤ G. It is clear that any proper subgroup of a group can
not be both F-subnormal and F-abnormal, i. e. these notions are alternative.
Besides, if X ⊆ F, then every X-subnormal subgroup is F-subnormal and
every F-abnormal subgroup is X-abnormal.

Many authors investigated groups in which all or certain subgroups are
F-subnormal or F-abnormal, see references in [4].

For a subgroup-closed formation F containing all nilpotent groups, ev-
ery F-abnormal subgroup is self-normalizing. Self-normalizingness and F-
subnormality are not alternative notions. For instance, in a soluble group,
every non-normal subgroup of prime index is both self-normalizing and U-
subnormal. Here U denotes the formation of all supersoluble groups.
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Example. Assume that F = NA is the formation of all groups with the nilpo-
tent derived subgroups. The class of groups with F-subnormal or F-abnormal
primary subgroups was investigated in [5]. If we replace F-abnormality by
self-normalizingness, then the class under study broadens.

By Epn we denote an elementary abelian group of order pn for a prime p
and a positive integer n, Zm denotes a cyclic group of order m for a positive
integer m.

In GAP’s SmallGroup library [6], there is the group

G = (S3 × S3 × A4)⋊ Z2 (GAP SmallGroup ID [864, 4670]).

In G, the Sylow 3-subgroup G3 ≃ E33 is F-subnormal, the Sylow 2-subgroup
G2 ≃ E24 ⋊ Z2 is self-normalizing, non-F-subnormal and non-F-abnormal,
and every proper subgroup of G2 is F-subnormal. Besides,

GF = F (G) ≃ E32 × E22 < GN ≃ E32 ×A4 < G′ ≃ (E32 ×A4)⋊ Z2.

Thus G belongs to the class of groups with F-subnormal or self-normalizing
primary subgroups and does not belong to the class of groups in which pri-
mary subgroups are F-subnormal or F-abnormal.

Groups in which certain subgroups are F-subnormal or self-normalizing
were studied in [7]– [9]. In particular, in [9] the structure of group with F-
subnormal or self-normalizing Sylow subgroups was described for the large
class of subgroup-closed formations F.

We proceed to develop this line of research and describe groups with
F-subnormal or self-normalizing primary cyclic subgroups in case F is a
subgroup-closed saturated superradical formation containing all nilpotent
groups. We prove

Theorem. If F is a subgroup-closed saturated superradical formation con-

taining all nilpotent groups, then for a soluble group G /∈ F, the following

statements are equivalent.

(1) Every primary cyclic subgroup of G is self-normalizing or F-subnormal.

(2) Every proper subgroup of G is self-normalizing or F-subnormal.

(3) G = G′
⋊ 〈x〉, where 〈x〉 is a Sylow p-subgroup for some p ∈ π(G) and

a Carter subgroup, G′
⋊ 〈xp〉 ∈ F.

A subnormal subgroup-closed formation F is superradical if a group G =
AB, where A and B are F-subnormal F-subgroups of G, belongs to F. It is
well known that a formation with the Shemetkov property [10, 6.4.6] and a
lattice formation [11, Lemma 4] are superradical.
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2 Preliminaries

If A is a subgroup of a group B, then we write A ≤ B; if A is a normal
subgroup of a group B, then we write A⊳B. By π(G) we denote the set of
all primes dividing the order of a group G. A semidirect product of a normal
subgroup A and a subgroup B is denoted by A⋊B. The symbol � indicates
the end of the proof.

The formations of all abelian and nilpotent subgroups are denoted by A

and N, respectively.
Let F be a formation, and G be a group. The subgroup

GF =
⋂

{N ⊳G : G/N ∈ F}

is called the F-residual of G.
If X and F are subgroup-closed formations, then the product

XF = { G ∈ E | GF ∈ X}

is also a subgroup-closed formation according to [2, p. 337] and [3, p. 191].
We need the following properties of F-subnormal and F-abnormal sub-

groups.

Lemma 1. Let F be a formation, let H and K be subgroups of G, and let

N ⊳G. The following statements hold.

(1) If K is F-subnormal in H and H is F-subnormal in G, then K is

F-subnormal in G [10, 6.1.6 (1)].
(2) If K/N is F-subnormal in G/N , then K is F-subnormal in G [10,

6.1.6 (2)].
(3) If H is F-subnormal in G, then HN/N is F-subnormal in G/N [10,

6.1.6 (3)].
(4) If F is a subgroup-closed formation and GF ≤ H, then H is F-

subnormal in G [10, 6.1.7 (1)].
(5) If F is a subgroup-closed formation, K ≤ H, H is F-subnormal in G

and H ∈ F, then K is F-subnormal in G.

Proof. (5) Since F is a subgroup-closed formation and H ∈ F, we have K is
F-subnormal in H and K is F-subnormal in G in view of (1).

Lemma 2 ( [7, Lemma 1.4]). Let F be a subgroup-closed formation containing

groups of order p for all p ∈ P, and let A be a F-abnormal subgroup of G.

(1) If A ≤ B ≤ G, then A is F-abnormal in B and A = NG(A);
(2) If A ≤ B ≤ G, then B is F-abnormal in G and B = NG(B).

3



A subgroup H of a group G is called an X-projector of G if HN/N is
an X-maximal subgroup of G/N for every normal subgroup N of G. A
Carter subgroup is a nilpotent self-normalizing subgroup ( [1, VI.12], [2,
III.4.5]). In soluble groups, Carter subgroups are N-projectors, they exist
and are conjugate. An insoluble group may have no Carter subgroups, but
by E.P. Vdovin theorem [12] Carter subgroups are conjugate whenever they
exist.

Lemma 3 ( [13, Theorem 15.1]). Let F be a formation. A subgroup H of

a soluble group G is an F-projector of G if and only if H ∈ F and H is

F-abnormal in G.

If G /∈ F, but every proper subgroup of G belongs to F, then G is a min-
imal non-F-group. A minimal non-N-group is also called a Schmidt group,
and its properties is well known [14].

Lemma 4 ( [15, Lemma 3]). Let F be a subgroup-closed saturated formation.

A soluble minimal non-F-group G is a group of one of the following types:

(1) G is a group of order p for a prime p /∈ π(F);
(2) G is a Schmidt group.

Lemma 5. Let F be a subgroup-closed saturated formation containing all

nilpotent groups. A soluble group G belongs F if and only if every primary

cyclic subgroup of G is F-subnormal.

Proof. Assume that G ∈ F. Then every proper, and thus every primary
cyclic subgroup of G, is F-subnormal.

Conversely, suppose that there are groups not in F, in which every primary
cyclic subgroup is F-subnormal. Choose a group G of minimal order among
these groups. Then every proper subgroup of G belongs to F. In view
of Lemma 4, G is a Schmidt group, and G = P ⋊ 〈y〉 [14, Theorem 1.1].
By [14, Theorem 1.5 (5.2)], either GF ≤ Φ(G) or P ≤ GF. If GF ≤ Φ(G),
then G ∈ F since F is a saturated formation, a contradiction. Let P ≤ GF.
By the choice of G, 〈y〉 is F-subnormal in G, and so in G, there is a maximal
subgroup M containing 〈y〉 and GF, a contradiction.

3 The Theorem Proof

Proof. Assume that every primary cyclic subgroup of a soluble group G /∈ F

is self-normalizing or F-subnormal. Then according to Lemma 5, there is a
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cyclic p-subgroup 〈x〉 for some p ∈ π(G), which is not F-subnormal in G. By
the choice of G, 〈x〉 is self-normalizing, and so 〈x〉 is a Sylow subgroup and a
Carter subgroup of G. Since a Carter subgroup is an N-projector [3, 5.27], we
get G = GN〈x〉. In view of [1, IV.2.6], in G there is a normal Hall p′-subgroup
Gp′ and G = GN〈x〉 = Gp′⋊〈x〉. Hence Gp′ ≤ GN, but G/Gp′ ≃ 〈x〉 ∈ A ⊆ N

and GN ≤ G′ ≤ Gp′. Thus, Gp′ = GN = G′ and G = G′
⋊ 〈x〉. As Carter

subgroups of soluble groups are conjugate [3, 5.28], we conclude that G′
⋊〈xp〉

has no self-normalizing primary cyclic subgroup. Therefore G′
⋊ 〈xp〉 ∈ F by

Lemma 5. Thus (3) follows from (1).
Now we prove that (3) implies (2). Assume that a soluble group G /∈ F

is represented in the form G = G′
⋊ 〈x〉, where 〈x〉 is a Sylow p-subgroup for

some p ∈ π(G) and a Carter subgroup, G′
⋊ 〈xp〉 ∈ F. Choose a subgroup

H of G. If |〈x〉| divides |H|, then 〈x〉g ≤ H for some g ∈ G and H is self-
normalizing. Suppose that |〈x〉| does not divide |H|. Then A = G′H is a
proper subgroup of G, and A ∈ F by the choice of G. We conclude from
A ⊆ N ⊆ F that GF ≤ G′ ≤ A, and A is F-subnormal in G by Lemma 1 (4).
Hence H is F-subnormal in G in view of Lemma 1 (5). Thus, (2) follows from
(3).

Finally, assume that every proper subgroup of G is self-normalizing or
F-subnormal. Obviously, every primary cyclic subgroup of G is also self-
normalizing or F-subnormal. Thus (2) implies (1).

Note that in view of Lemma 2 (1), if F is a subgroup-closed formation
containing all nilpotent subgroups, then every F-abnormal subgroup is self-
normalizing. Hence the proved theorem extends results of [5, 16–18]. In
particular,

Corollary. If F is a subgroup-closed saturated superradical formation con-

taining all nilpotent groups, then for a soluble group G /∈ F, the following

statements are equivalent.

(1) Every primary cyclic subgroup of G is F-subnormal or F-abnormal.

(2) Every proper subgroup of G is F-subnormal or F-abnormal.

(3) G = G′
⋊ 〈x〉, where 〈x〉 is a Sylow p-subgroup for some p ∈ π(G) and

an F-projector of G, G′ = GF and G′
⋊ 〈xp〉 ∈ F.

Proof. Firstly, we prove that (3) follows from (1). Assume that every primary
cyclic subgroup of G is F-subnormal or F-abnormal. Then it follows from
Lemma 2 (1) that every primary cyclic subgroup of G is F-subnormal or
self-normalizing, and we can use the proved theorem. So, G = G′

⋊ 〈x〉,
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where 〈x〉 is a Sylow p-subgroup for some p ∈ π(G) and a Carter subgroup,
G′

⋊ 〈xp〉 ∈ F. To prove that 〈x〉 is F-abnormal in G, we suppose that is not
true. Then 〈x〉 is F-subnormal in G by the choice of G. Hence every primary
cyclic subgroup of G is F-subnormal and G ∈ F by Lemma 5, a contradiction.
Thus 〈x〉 is F-abnormal in G and an F-projector of G in view of Lemma 3.
Therefore G = GF〈x〉 and G′ = GF.

Now assume that (3) is true. According to Lemma 3, we deduce that
〈x〉 is F-abnormal in G. By the proved theorem, every subgroup of G is
self-normalizing or F-subnormal. Let H be a self-normalizing and non-F-
subnormal subgroup of G. If A = G′H is a proper subgroup of G, then
A ∈ F and H is F-subnormal in G by Lemma 1 (5), a contradiction. Hence
G = G′

⋊ 〈x〉 = G′H and 〈x〉 ≤ H . In view of Lemma 2 (2), we obtain H is
F-abnormal in G. Thus (3) implies (2).

Finally, assume that every proper subgroup of G is F-subnormal or F-
abnormal. Then every primary cyclic subgroup of G is also F-subnormal or
F-abnormal. Thus (1) follows from (2).
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