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We consider the structure of a finite group having a normal series whose factors have
bicyclic Sylow subgroups. In particular, we investigate groups of odd order and A4-free
groups with this property. Exact estimations of the derived length and nilpotent length
of such groups are obtained.
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1. INTRODUCTION

All groups considered in this article will be finite.
By the Zassenhaus Theorem (see Huppert [7], IV, 2.11) the derived subgroup

of a group with cyclic Sylow subgroups is a cyclic Hall subgroup such that the
corresponding quotient group is also cyclic. Hence the derived length of such group
is at most 2.

Recall that a group is bicyclic if it is the product of two cyclic subgroups. The
invariants of the groups with bicyclic Sylow subgroups were found in Monakhov
and Gribovskaya [9]. In particular, it is proved that the derived length of such
groups is at most 6 and the nilpotent length of such groups is at most 4.

Let the group G have a normal series in which every Sylow subgroup of its
factors is cyclic. Then G is supersolvable by the Zassenhaus Theorem.

In this article we study groups having a normal series whose factors have
bicyclic Sylow subgroups. We prove the following theorem.

Theorem 1.1. Let G be a solvable group having a normal series such that every Sylow
subgroup of its factors is bicyclic. Then the following statements hold:

(1) the nilpotent length of G is at most 4 and the derived length of G/��G� is at most 5;
(2) G contains a normal subgroup N such that G/N is supersolvable and N possesses

an ordered Sylow tower of supersolvable type;
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NORMAL SERIES WITH BICYCLIC SYLOW SUBGROUPS 3179

(3) l2�G� ≤ 2, l3�G� ≤ 2 and lp�G� ≤ 1 for every prime p > 3;
(4) G contains a normal Hall �2� 3� 7�′-subgroup H and H possesses an ordered Sylow

tower of supersolvable type.

Here ��G� is the Frattini subgroup of G and lp�G� is the p-length of G. A group
G is A4-free if there is no section isomorphic to the alternating group A4 of degree 4.

Corollary 1.2. Let G be a solvable group having a normal series such that every
Sylow subgroup of its factors is bicyclic. If G is an A4-free group then the following
statements hold:

(1) lp�G� ≤ 1 for every prime p;
(2) the derived length of G/��G� is at most 3.

Corollary 1.3. Let G be a group of odd order having a normal series such that every
Sylow subgroup of its factors is bicyclic. Then the following statements hold:

(1) G possesses an ordered Sylow tower of supersolvable type;
(2) The derived subgroup of G is nilpotent. In particular, G/��G� is metabelian.

Examples that show accuracy of the estimations in Theorem 1.1 and Corollary 1.2
are constructed; see Examples 3.1–3.3.

2. PRELIMINARIES

In this section, we give some definitions and basic results which are essential
in the sequel.

A normal series of a group G is a finite sequence of normal subgroups Gi

such that

1 = G0 ⊆ G1 ⊆ · · · ⊆ Gm = G� (1)

We call the groups Gi+1/Gi the factors of the normal series (1).
Let A be a subgroup of a group G. Then AG denotes the maximal normal

subgroup of G contained in A. Let G be a group of order pa1
1 p

a2
2 � � � p

ak
k , where p1 >

p2 > · · · > pk. We say that G has an ordered Sylow tower of supersolvable type if
there exists a series

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gk−1 ≤ Gk = G

of normal subgroups of G such that for each i = 1� 2� � � � � k, Gi/Gi−1 is isomorphic
to a Sylow pi-subgroup of G. By G = �A	B we denote the semidirect product with
normal subgroup A of G, Zn is a cyclic group of order n. We use d�G� to denote
the derived length of a solvable group G.

Let � and � be nonempty formations. If G is a group, then G� denotes
the �-residual of G, that is, the intersection of all those normal subgroups N
of G for which G/N ∈ �. We define � �� = �G �G� ∈ �� and call � �� the
formation product of � and � (see Doerk and Hawkes, [3], IV, 1.7). As usually,
�2 = � � � and �n = �n−1 � � for every natural n ≥ 3. A formation � is said to

D
ow

nl
oa

de
d 

by
 [

T
ro

fi
m

uk
 A

le
x]

 a
t 1

3:
37

 0
7 

O
ct

ob
er

 2
01

1 



3180 MONAKHOV AND TROFIMUK

be saturated if G/��G� ∈ � implies that G ∈ �. In this article, � and � denotes
the formations of all nilpotent and all Abelian groups, respectively. The other
definitions and terminology about formations could be referred to Doerk and
Hawkes [3], Huppert [7], and Shemetkov [11].

Lemma 2.1. Let G be a bicyclic p-group.

1. Let N be a complemented normal subgroup in G. Then:

(1.1) if p = 2, then �N/��N�� ≤ 4;
(1.2) if p > 2, then either N = G or N is cyclic.

2. If p > 2, then G is metacyclic.
3. If p = 2, then any normal subgroup of G is generated by at most three elements.

Proof. 1. It follows from Monakhov and Gribovskaya ([9], Lemma 1).

2. It follows from Huppert ([7], III, 11.5).

3. Let G = �a	�b	 be a bicyclic 2-subgroup and N a normal subgroup of
G. Apply induction on �G� + �G/N �. First we show that �N/��N�� ≤ 8. Assume
that ��N� 
= 1. Then ��N� is normal in G and by induction, N/��N� is generated
by at most three elements. Hence �N/��N�� ≤ 8 and by Huppert ([7], III, 3.15),
N is generated by at most three elements. Consequently, ��N� = 1 and N is an
elementary Abelian group. By the inductive assumption, N is not contained in
the proper bicyclic subgroups of G. If �a	N 
= G, then �a	N = �a	��a	N ∩ �b	� is
bicyclic, a contradiction. Hence �a	N = G. Let T = �a	 ∩ N . Then �T � ≤ 2 and G/T
is bicyclic 2-subgroup with complemented normal subgroup N/T . By 1.1), �N/T � ≤ 4.
Hence �N � ≤ 8. The lemma is proved. �

Example 2.2. The calculations in the computer system GAP (see GAP, [4]) show
that the group G of order 189 = 337 having number 7 in the library SmallGroups,

G = 〈
a� b� c� d � b3 = c3 = d7 = 1� a3 = c� �a� b	 = c−1�

�a� d	 = d−1� �a� c	 = �b� c	 = �b� d	 = �c� d	 = 1
〉
�

is the product of two cyclic subgroups A = �bd	 of order 21 and B = �ab	 of
order 9. Hence, G is a bicyclic nonprimary group of odd order. There are only three
nontrivial cyclic normal subgroups in G: N1 = �c	 of order 3, N2 = �d	 of order
7, and N3 = �cd	 of order 21. Since G/Ni is noncyclic, it follows that G is non-
metacyclic. Therefore, the statement of Proposition 2 (Lemma 2.1) is not true for
nonprimary groups.

Example 2.3. The bicyclic 2-group G of order 32,

G = 〈
a� b� c � a2 = b8 = c2 = 1� �a� b	 = c� �b� c	 = b4� �a� c	 = 1

〉
�

(see Huppert [6]), contains a normal elementary Abelian subgroup N = �a	 × �b4	 ×
�c	 of order 8 with cyclic group G/N of order 4. This example shows that the
estimation of the number of generators in Proposition 3 (Lemma 2.1) is exact.
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NORMAL SERIES WITH BICYCLIC SYLOW SUBGROUPS 3181

Recall that rp�G� is the chief p-rank of the solvable group G (see Huppert [7],
VI, 5.2). The chief rank is the maximum of rp�G� for all p ∈ 
�G�.

Lemma 2.4. Let G be a solvable group having a normal series such that every Sylow
subgroup of its factors is bicyclic. Then the orders of chief factors of G are p, q2, or 8,
where p and q are primes from 
�G�.

Proof. Let (1) be a normal series of G such that every Sylow subgroup of its
factors is bicyclic. We refine this series to a chief series of G. Let N = N/Gi be a
minimal normal subgroup of G = G/Gi such that N ⊆ Gi+1 = Gi+1/Gi. Since G is
solvable, N is an elementary Abelian p-subgroup for some prime p ∈ 
�G�. Besides,
N is normal in a bicyclic Sylow p-subgroup of Gi+1. If p > 2, then Gi+1 is metacyclic
by Proposition 2 (Lemma 2.1). Hence �N � = p or �N � = p2. If p = 2, then �N � = 2, 4,
or 8 by Proposition 3 (Lemma 2.1). As a result we obtain a chief series with factors
of orders p, q2, or 8. By the Jordan–Hölder Theorem, all chief series of some group
are isomorphic. Hence, rp�G� ≤ 2 for any prime p > 2 and r2�G� ≤ 3 by definition
of the chief p-rank rp�G�. The lemma is proved. �

Lemma 2.5. Let G be a group of odd order. Then G has a normal series such that
every Sylow subgroup of its factors is bicyclic if and only if the chief rank of G is at
most 2.

Proof. Let G has a normal series such that every Sylow subgroup of its factors is
bicyclic. Then the chief rank of G is at most 2 by Lemma 2.4. Conversely, if the chief
rank of G is at most 2, then G has a chief series in which every factor either has
prime order or is an elementary Abelian of order p2 for some prime p. The lemma
is proved. �

Lemma 2.6. Let G be a solvable group having a normal series such that every Sylow
subgroup of its factors is bicyclic. If M is a maximal subgroup of G, then �G � M� is
either a prime or the square of a prime or 8.

Proof. By Lemma 2.4, G has a chief series

1 = G0 < G1 < · · · < Gi < Gi+1 < · · · < Gm = G

with factors of orders p, q2, or 8, where p and q are primes. Let Gi ⊆ M , but Gi+1 
⊆
M . Since M is maximal in G, it follows that Gi+1M = G and �G � M� = �Gi+1 � Gi+1 ∩
M�� Because Gi ⊆ Gi+1 ∩M , we have

�Gi+1 � Gi+1 ∩M� = �Gi+1 � Gi�
�Gi+1 ∩M � Gi�

and �G � M� is either a prime or the square of a prime or 8. The lemma is proved. �

Lemma 2.7 (Bloom [1], Theorem 3.4). Let G be a subgroup of GL�2� q� and q=p�,
where p is prime. Then, up to conjugacy in GL�2� q�, one of the following occurs:

(1) G is cyclic;
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3182 MONAKHOV AND TROFIMUK

(2) G = QM , where Q is a subgroup of the p-group
{(

1 0

 1

) � 
 ∈ GF�q�
}
and M ⊆

NG�Q� is a subgroup of the group D of all diagonal matrices;
(3) G = �Zu� S�, where u divides q2 − 1, S � Y → Y q, for all Y ∈ Zu, and S2 is a scalar

2-element in Zu;
(4) G = �M� S�, where M ⊆ D and �G � M� = 2;
(5) G = �SL�2� p��� V 	 (“Case 1”) or

G =
〈
SL�2� p��� V�

(
b 0
0 �b

) 〉
�

(“Case 2”), where V is a scalar matrix, � generates �GF�p���∗, p� > 3, ���. In
Case 2, �G � �SL�2� p��� V 	� = 2;

(6) G/�−I� is isomorphic to S4 × Zu, A4 × Zu or A5 × Zu, if p 
= 5, where Zu is a
scalar subgroup of GL�2� q�/�−I�;

(7) G is not of type �6�, but G/�−I� contains A4 × Zu as a subgroup of index 2, and
A4 as a subgroup with cyclic quotient group, Zu is as in type �6� with u even.

Lemma 2.8. Let H be an A4-free p′-subgroup of GL�2� p�, where p is prime. Then
H is metabelian.

Proof. We shall use the result of Lemma 2.7. A subgroup H from Proposition 1
is Abelian. The order of a subgroup H from Proposition 2 is divisible by a prime
p. Since the group of all diagonal matrices is Abelian, it follows that a subgroup
H from Proposition 3-4 is metabelian. A subgroup H from Proposition 5-7 is not
A4-free. Hence if H is an A4-free p′-subgroup GL�2� p�, then H is metabelian. The
lemma is proved. �

Lemma 2.9. Let H be a subgroup of GL�3� 2�. Then H ∈ �1, GL�3� 2�, Z2, Z3, Z7,
Z2 × Z2, Z4, D8, S3, A4, S4, �Z7	Z3�.

Proof. By Huppert ([7], II, 6.14), GL�3� 2� � PSL�2� 7�. In view of Huppert ([7], II,
8.27), we conclude that H satisfies the hypotheses of our lemma. �

Lemma 2.10. Let G be a solvable group such that the index of each of its maximal
subgroup is either a prime or the square of a prime or 8. Then the following statements
hold:

(1) G ∈ �2′ ��2 � �. In particular, the nilpotent length of G is at most 4;
(2) G contains a normal subgroup N such that G/N is supersolvable and N possesses

an ordered Sylow tower of supersolvable type;
(3) l2�G� ≤ 2, l3�G� ≤ 2 and lp�G� ≤ 1 for every prime p > 3. If G is a group of odd

order, then lp�G� ≤ 1 for every prime p ∈ 
�G�;
(4) G contains a normal Hall �2� 3� 7�′-subgroup H and H possesses an ordered Sylow

tower of supersolvable type;
(5) If G is a group of odd order, then G possesses an ordered Sylow tower of

supersolvable type.

Proof. 1. It follows from Gribovskaya ([5], Theorem 2, Corollary 3).
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NORMAL SERIES WITH BICYCLIC SYLOW SUBGROUPS 3183

2. By 1) G ∈ �2′ ��2 � �, i.e., G� ∈ �2′ ��2. Hence G� = �T	H , where T is
a 2′–Hall subgroup, H is a Sylow 2-subgroup. Since T ∈ �2′ , it follows that T is
nilpotent and G� possesses an ordered Sylow tower of supersolvable type.

3. We use induction on �G�. Let p be a prime divisor of �G�. By Huppert ([7],
VI, 6.9), we may assume that Op′�G� = ��G� = 1 and G = �F	M , where the Fitting
subgroup F = F�G� = CG�F� is the unique minimal normal p-subgroup and M is
a maximal subgroup of G. Hence, a Sylow p-subgroup Gp = �F	�Gp ∩M� = �F	Mp�
where Mp is a Sylow p-subgroup of M . If Mp = 1, then F = Gp and lp�G� ≤ 1. Let
Mp 
= 1. Since �F � = �G � M�, it follows that �F � is equal either to p or p2, or 8. If
�F � = p, then G/F is a cyclic group whose order divides �p− 1�. Hence Gp = F , a
contradiction.

Let �F � = p2. Then G/F is isomorphic to a subgroup of GL�2� p�. Since
�GL�2� p�� = �p2 − p��p2 − 1�, the order of Gp is equal to p3 and by Huppert
([7], VI, 6.6), lp�G� ≤ 2. Since F = CG�F�, Gp is non-Abelian and by Huppert
([7], I, 14.10), it is isomorphic either to a metacyclic group M3�p� = �a� b � ap2 =
bp = 1� ab = a1+p	 = ��a		�b	� or to a group of exponent p. Since �1�M3�p�� is
an elementary Abelian p-subgroup of order p2, it does not have a complement in
M3�p�. Hence Gp is a group of exponent p. If G has odd order or p is not a Fermat
prime, then by Huppert and Blackburn ([8], IX, 4.8), lp�G� ≤ 1. But now by Huppert
and Blackburn ([8], IX, 5.5(b)), lp�G� ≤ 1 for p > 3.

Finally, let �F � = 8. Then p = 2 and G/F is isomorphic to a subgroup H of
GL�3� 2�. In this case, O2�G/F� = 1 and by Lemma 2.9, H ∈ �Z3� Z7� S3� �Z7	Z3�.
Evidently, l2�G� ≤ 2.

4. We show that G has a normal Hall 
–subgroup G
 for 
 = 
�G� \
�2� 3� 7�. Since the class of all 
-closed subgroups is a saturated formation, by
induction we can assume that O
�G� = 1 and the Fitting subgroup F is an
elementary Abelian p-subgroup whose order divides 23, 32 or 72. Hence the group
G/F is isomorphic to a subgroup of GL�n� p� for p = 2 and n ≤ 3, or for p ∈ �3� 7�
and n ≤ 2� Since 
�GL�n� p�� ⊆ �2� 3� 7� for given n and p, it follows that G is a

′–subgroup.

By Monakhov et al. ([10], Corollary 2.4), G
 possesses an ordered Sylow tower
of supersolvable type.

5. It follows from Monakhov et al. ([10], Corollary 2.3). �

3. PROOFS OF THEOREM 1.1 AND COROLLARIES 1.2 AND 1.3

Proof of Theorem 1.1

By Lemma 2.6 and Lemma 2.10 (1–4), we must only prove that the derived
length of G/��G� is at most 5.

We first show that G ∈ � � �4. Apply induction on �G�. Assume that ��G� 
=
1. Since any quotient group satisfies the hypothesis of the theorem, G/��G� ∈ � �
�4 by induction. Since � � �4 is a saturated formation, it follows that G ∈ � � �4.
Next we assume that ��G� = 1.

Now suppose that the Fitting subgroup F�G� is not a minimal normal
subgroup in G. Then F�G� is the direct product of minimal normal subgroups of G,
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3184 MONAKHOV AND TROFIMUK

i.e., F�G� = F1 × F2 × · · · × Fn, where Fi is a minimal normal subgroup of G for any
i and n ≥ 2. By the inductive assumption, we have G/Fi ∈ � � �4. Consequently,
G ∈ � � �4, because � � �4 is a formation.

Next we assume that F = F�G� is the unique minimal normal subgroup of G.
Besides, F = CG�F� and G = �F	M , where M is a maximal subgroup of G. Since
�F � = �G � M�, it follows by Lemma 2.6 that �F � is equal to p, p2 or 8, where p is
prime.

If �F � = p, then G/F is cyclic, since it is the subgroup of AutF = Zp−1. Hence
G/F ∈ �. Let �F � = p2. Then G/F is isomorphic to an irreducible solvable subgroup
of GL�2� p�. By Monakhov and Gribovskaya ([9], Lemma 3), G/F ∈ �4.

It remains to study the case �F � = 8. Then G/F is isomorphic to a solvable
subgroup H of GL�3� 2�. Let’s notice that F is the maximal normal 2-subgroup of
G, i.e., F = O2�G�. Hence O2�G/F� = 1. By Lemma 2.9, G/F ∈ �Z3� S3� Z7� �Z7	Z3�
and G/F ∈ �2 ⊆ �4.

From all the above, we proved that G/F ∈ �4. As F is nilpotent, G ∈ � �
�4. Since F/��G� is Abelian and �G/��G��/�F/��G�� � G/F , it follows that
G/��G� ∈ �5 and d�G/��G�� ≤ 5. The theorem is proved.

Proof of Corollary 1.2

1. By Proposition 3 (Theorem 1.1), we obtain l2�G� ≤ 2, l3�G� ≤ 2, and lp�G� ≤
1 for every prime p > 3. Now we show that lp�G� ≤ 1, where p ∈ �2� 3�. By
Huppert ([7], VI, 6.9), we may say that Op′�G� = ��G� = 1. By Lemma 2.4, the
Fitting subgroup F = F�G� is the unique minimal normal subgroup of order p�,
where � ≤ 3 for p = 2 and � ≤ 2 for p = 3. In particular, CG�F� = F and G =
�F	M for some maximal subgroup M of G. If �F � = p, then G/F is isomorphic
to a subgroup of order p− 1 and lp�G� ≤ 1. If �F � = 4, then Aut�F�G�� �
GL�2� 2� � S3. Hence either G/F�G� � Z3 or G/F�G� � S3. If G/F�G� � Z3,
then G � A4. If G/F�G� � S3, then G � S4. It means that G is not A4-free, a
contradiction.
Now let �F � = 8. Then G/F is isomorphic to a subgroup of GL�3� 2�. Since
O2�G/F� = 1, it follows by Lemma 2.9, that G/F ∈ �Z3� S3� Z7� �Z7	Z3�. In all
cases, except G/F � S3, we have l2�G� ≤ 1. Suppose that G/F is isomorphic to
S3. We may construct the subgroup H = �F	Z3 in G. Then the alternating group
A4 of degree 4 is contained in H , a contradiction.
Let �F � = 9. Then G/F is isomorphic to a subgroup of GL�2� 3� and O3�G/F� =
1. It is well known that H ∈ �1, Z2, Z4, Z8, Z2 × Z2, D8, Q8, SD16, SL�2� 3�,
GL�2� 3��. In any case, except G/F � SL�2� 3� and G/F � GL�2� 3�, F is a Sylow
3-subgroup in G and l3�G� ≤ 1. Since SL�2� 3� and GL�2� 3� are not A4-free, we
have a contradiction.

2. We use induction on �G�. We first prove that G ∈ � � �2. By induction, we can
assume that ��G� = 1 and G has the unique minimal normal subgroup which
coincides with Fitting subgroup F = F�G�. By Proposition 1 (Corollary 1.2),
lp�G� ≤ 1. Hence F is a Sylow p-subgroup of G. Besides, F = CG�F� and F has
a complement M in G, where M is a maximal subgroup of G. By Lemma 2.6, �F �
is equal to p, p2 or 8, where p is prime.
If �F � = p, then G/F is cyclic, since it is the subgroup of AutF = Zp−1. Hence
G/F is Abelian. Let �F � = p2. Then G/F is isomorphic to an irreducible solvable
p′-subgroup H of GL�2� p�. By Lemma 2.8, H is metabelian, i. e. G/F ∈ �2.
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NORMAL SERIES WITH BICYCLIC SYLOW SUBGROUPS 3185

Now let �F � = 8. Then G/F is isomorphic to a subgroup of GL�3� 2�. By
Lemma 2.9, G/F ∈ �Z3� Z7� �Z7	Z3�. Then H is metabelian and G/F ∈ �2.
So, in any case G/F ∈ �2. Since F/��G� is Abelian and �G/��G��/�F/��G�� �
G/F , it follows that G/��G� ∈ �3 and d�G/��G�� ≤ 3. The corollary is proved.

Proof of Corollary 1.3

1. By Lemma 2.10 (5), our assertion holds.
2. We show that the derived subgroup of G is nilpotent. We use induction on

�G�. Without loss of generality, we may assume that ��G� = 1 and G has a
unique minimal normal subgroup which coincides with Fitting subgroup F =
F�G�. Then F is an elementary Abelian p-subgroup for some prime p. Since
��G� = 1, it follows that G has a maximal subgroup M such that G = �F	M .
Because �F � = �G � M�, we have by Lemma 2.6, that �F � is equal to p or p2. By
Proposition 3 (Lemma 2.10), lp�G� = 1. Hence F is a Sylow p-subgroup of G and
G/F is a p′-subgroup. In the solvable groups the Fitting subgroup coincides with
its centralizer in G, and hence G/F is isomorphic to a subgroup of AutF .

If �F � = p, then G/F is cyclic and G′ ⊆ F . Let �F � = p2. Then G/F is
isomorphic to an irreducible solvable p′-subgroup H of GL�2� p�. By Dixon ([2],
Theorem 5.2), H is Abelian and G′ ⊆ F . So, in any case, the derived subgroup of G
is nilpotent.

Since F/��G� is Abelian, it follows that G/��G� is metabelian. The corollary
is proved.

Example 3.1. Let E72 be an elementary Abelian group of order 72. The
automorphism group of E72 is the general linear group GL�2� 7� with cyclic center
Z = Z�GL�2� 7�� of order 6. We choose a subgroup C of order 2 in Z. Evidently,
C is normal in GL�2� 7�. The calculations in the computer system GAP show that
GL�2� 7� has a subgroup S of order 48 such that S/C is isomorphic to the symmetric
group S4 of degree 4. The semidirect product G = �E72 	S is a group of order 2352 =
24723. In particular, ��G� = 1. The nilpotent length of G is equal to 4, the derived
length of G is equal to 5. The group G has the chief series

1 ⊂ E72 ⊂ �E72 	Z2 ⊂ �E72 	Q8 ⊂ ��E72 	Q8	Z3 ⊂ �E72 	S = G

with bicyclic factors

E72� ��E72 	Z2�/�E72� � Z2� ��E72 	Q8�/��E72 	Z2� � E4�

���E72 	Q8	Z3�/��E72 	Q8� � Z3� �G/��E72 	Q8	Z3� � Z2�

Hence, the estimations of the nilpotent length and the derived length, which are
obtained in Theorem 1.1, are exact.

Example 3.2. Let E52 be an elementary Abelian group of order 52. The
automorphism group of E52 is the general linear group GL�2� 5�. The group
GL�2� 5� has a subgroup, which is isomorphic to the symmetric group S3 of degree 3.
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The semidirect product G = �E52 	S3 is an A4-free group with identity Frattini
subgroup. The derived length of G is equal to 3. The group G has the chief series

1 ⊂ E52 ⊂ �E52 	Z3 ⊂ �E52 	S3 = G

with bicyclic factors

E52� ��E52 	Z3�/�E52� � Z3� ��E52 	S3�/��E52 	Z3� � Z2�

Consequently, the estimation of the derived length, which is obtained in
Corollary 1.2, is exact.

Example 3.3. It is well known that S4 has the normal series

1 ≤ E4 ≤ A4 ≤ S4

with bicyclic factors and l2�S4� = 2. The group G = �E32 	SL�2� 3� has the normal
series

1 ≤ E32 ≤ �E32 	Z2 ≤ �E32 	Q8 ≤ �E32 	SL�2� 3�

with bicyclic factors and l3�G� = 2.
The project is supported by the Belarus republican fund of basic researches

(No. F 08R-230 ).

REFERENCES

[1] Bloom, D. (1967). The subgroups of PSL�3� q� for odd q. Trans. Amer. Math. Soc.
1(127):150–178.

[2] Dixon, J. D. (1971). The Structure of Linear Groups. Princeton, N. J., and London:
Van Nostrand.

[3] Doerk, K., Hawkes, T. (1992). Finite Soluble Groups. Berlin, New York: Walter de
Gruyter.

[4] GAP. (2009). Groups, Algorithms, and Programming. Version 4.4.12. Available at
www.gap-system.org.

[5] Gribovskaya, E. E. (2001). Finite solvable groups with the index of maximal subgroups
is p, p2 or 8. Vesti NAN Belarus. 4:11–14. (In Russian).

[6] Huppert, B. (1953). Über das Produkt von paarweise vertauschbaren
zyklischen Gruppen. Math. Z. 58:243–264.

[7] Huppert, B. (1967). Endliche Gruppen I. Berlin, Heidelberg, New York: Springer.
[8] Huppert, B., Blackburn, N. (1982). Finite Groups II. Berlin, Heidelberg, New York:

Springer.
[9] Monakhov, V. S., Gribovskaya, E. E. (2001). Maximal and Sylow subgroups of

solvable finite groups. Matem. Notes 70(4):545–552.
[10] Monakhov, V. S., Selkin, M. V., Gribovskaya, E. E. (2002). On normal solvable

subgroups of finite groups. Ukr. Math. J. 54(7):950–960. (in Russian).
[11] Shemetkov, L. A. (1978). Formations of finite groups. Nauka. (in Russian).

D
ow

nl
oa

de
d 

by
 [

T
ro

fi
m

uk
 A

le
x]

 a
t 1

3:
37

 0
7 

O
ct

ob
er

 2
01

1 


