УДК 512.542

Д.В. Γ рицук¹, А.А. Трофимук², Т.В. Бондарук³

 1 канд. физ.-мат. наук, зав. каф. прикладной математики и информатики Брестского государственного университета имени А.С. Пушкина 2 канд. физ.-мат. наук, докторант каф. алгебры и геометрии Гомельского государственного университета имени Франциска Скорины 3 магистрант каф. алгебры, геометрии и математического моделирования Брестского государственного университета имени А.С. Пушкина e-mail: ¹dmitry.gritsuk@gmail.com, ²alexander.trofimuk@gmail.com

ИНВАРИАНТЫ -РАЗРЕШИМОЙ ГРУППЫ. У КОТОРОЙ СИЛОВСКИЕ ПОДГРУППЫ ИЗ ФАКТОРОВ ИМЕЮТ ЗАДАННЫЕ ОГРАНИЧЕНИЯ

Исследованы -разрешимые группы, у которых силовские подгруппы из факторов имеют заданные ограничения, получены оценки π -длины, нильпотентной π -длины и производной π -длины для таких групп. В частности, если π -разрешимая группа G обладает нормальным рядом, силовские подгруппы π -факторов которого являются цикличискими, то π -длина не превышает 1, а нильпотентная π -длина и производная π -длина не превышают 2. Если π -разрешимая группа G обладает нормальным рядом, силовские подгруппы π -факторов которого являются бишиклическими и $2 \in \pi$, то π -длина не превышает 2. нильпотентная π -длина не превышает 4, а производная π -длина не превышает 10.

Рассматриваются только конечные частично разрешимые группы. Все обозначения и используемые определения соответствуют [1; 2].

Строение частично разрешимых групп можно изучить за счет получения оценок таких инвариантов как π -длина, нильпотентная π -длина и производная π -длина, где π – некоторое подмножество множества простых чисел \mathbb{P} . Дополнение к π во множестве \mathbb{P} обозначается через π' . Символом π обозначается также функция, определенная на множестве всех натуральных чисел $\mathbb N$ следующим образом: $\pi(a)$ – множество простых чисел, делящих натуральное число a. Для группы G и ее подгруппы H считаем, что $\pi(G) = \pi(|G|)$ и $\pi(G:H) = \pi(|G:H|)$ Зафиксируем множество простых чисел π . Если $\pi(m) \subseteq \pi$, то натуральное число m называется -числом. Группа G называется группой, если $\pi(G) \subseteq \pi$ и π' -группой, если $\pi(G) \subseteq \pi'$. В этом случае $\pi(G) \cap \pi' = \emptyset$.

Напомним, что субнормальным рядом группы G называется цепочка подгрупп

$$1 = G_0 \subset G_1 \subset \dots \subset G_{m-1} \subset G_m = G, \tag{1}$$

 $1=G_0\subset G_1\subset \cdots \subset G_{m-1}\subset G_m=G,$ (1) такая, что G_i нормальна в G_{i+1} для любого i. Фактор-группы G_{i+1}/G_i называются факторами субнормального ряда (1).

Группа называется π -разрешимой, если она обладает субнормальным рядом (1), факторы которого являются либо разрешимыми π -группами, либо π' -группами. Хорошо известно, что наименьшее число π -факторов среди всех таких субнормальных рядов группы G называется π -длиной π -разрешимой группы G и обозначается через $l_{\pi}(G)$.

В 1968 г. Картер, Фишер и Хоукс [3] для π -разрешимой группы ввели аналог нильпотентой длины, а именно, понятие нильпотентной π -длины. Пусть $G - \pi$ -разрешимая группа. Тогда она обладает субнормальным рядом (1), факторы которого являются либо π' -группами, либо нильпотентными π -группами. Наименьшее число нильпотентных π -факторов среди всех таких субнормальных рядов группы G называется нильпотентной π -длиной π -разрешимой группы и обозначается через $l_{\pi}^{n}(G)$. Ясно, что в случае, когда $\pi = \pi(G)$, значение нильпотентной π -длины $l_{\pi}^{n}(G)$ совпадает со значением нильпотентной длины группы G.

В.С. Монаховым в 2006 г. [4] был предложен аналог производной длины для π -разрешимых групп. Пусть $G - \pi$ -разрешимая группа. Тогда она обладает

субнормальным рядом (1), факторы которого являются либо π' -группами, либо абелевыми π -группами. Наименьшее число абелевых π -факторов среди таких субнормальных рядов группы G называется производной π -длиной π -разрешимой группы G и обозначается через $l^a_\pi(G)$. Если $\pi(G)=\pi$, то значение $l^a_\pi(G)$ совпадает со значением производной длины группы G.

В ряде работ Д.В. Грицука, В.С. Монахова и О.А. Шпырко получены оценки производной и нильпотентной π -длины конечной π -разрешимой группы в зависимости от строения либо силовских p-подгрупп для $p \in \pi$, либо π -холловой подгруппы.

Так, например, доказано, что если в π -разрешимой группе G силовские p-подгруппы циклические для всех $p \in \pi$, то $l_{\pi}^{a}(G) \leq 2$; если в π -разрешимой группе G силовские p-подгруппы абелевы для всех $p \in \pi$, то $l_{\pi}^{a}(G) = d(G_{\pi}) \leq |\pi(G_{\pi})|$ [5]. Установлено, что производная π -длина конечной π -разрешимой группы с бициклическими силовскими p-подгруппами для всех $p \in \pi$ не превышает 6 [6]. Доказано, что производная π -длина конечной π -разрешимой группы, силовские p- подгруппы которой либо бициклические либо имеют порядок p^3 для всех $p \in \pi$, не превышает 7 [5]. Напомним, что бициклической называют группу, факторизуемую двумя циклическими подгруппами.

В работе [7] установлено, что если в π -разрешимой группе G силовские p-подгруппы циклические для всех $p \in \pi$, то $l^n_\pi(G) \le 2$; если в π -разрешимой группе G силовские p-подгруппы бициклические для всех $p \in \pi$, то $l^n_\pi(G) \le 4$.

Нахождение инвариантов разрешимых групп с заданными свойствами силовских подгрупп нашло развитие в исследовании строения групп по свойствам силовских подгрупп в факторах их нормальных рядов.

Если у группы G имеется нормальный ряд с циклическими силовскими подгруппами в факторах, то несложно проверить, что G сверхразрешима. Поэтому группа G дисперсивна по Оре, ее коммутант нильпотентен, и нильпотентная длина группы G не выше 2. Поскольку любая p-группа имеет нормальный ряд с факторами простых порядков, то производную длину таких групп ограничить сверху нельзя. Однако, производная длина фактор-группы $G/\Phi(G)$ будет не выше 2.

Исследование разрешимых групп, обладающих нормальным рядом, факторы которого имеют бициклические силовские подгруппы, проведено в 2009 г. в работе [8]. В частности, получены оценки инвариантов (производной длины, нильпотентной длины и -длины) таких разрешимых групп. В 2013 г. [9] получено развитие теоремы Бэра о сверхразрешимости группы, у которой на участке нормального ряда разрешимой группы между подгруппой Фраттини и подгруппой Фиттинга факторы имеют простые порядки. В частности, получены оценки производной длины, нильпотентной длины и -длины разрешимой группы, у которой на участке нормального ряда между подгруппой Фраттини и подгруппой Фиттинга, силовские подгруппы факторов являются бициклическими.

Развитием данного направления иследования частично разрешимых групп является следующая теорема.

Теорема. Пусть $G-\pi$ -разрешимая группа. Если группа G обладает нормальным рядом, силовские подгруппы π -факторов которого являются:

- 1) циклическими, то $l_{\pi}(G) \leq 1$, $l_{\pi}^{n}(G) \leq l_{\pi}^{a}(G) \leq 2$;
- 2) метациклическими, то $l_{\pi}(G) \leq 2$, $l_{\pi}^{n}(G) \leq 4$, $l_{\pi}^{a}(G) \leq 10$, если $2 \in \pi$;
- 3) бициклическими, то $l_{\pi}(G) \leq 2$, $l_{\pi}^{n}(G) \leq 4$, $l_{\pi}^{a}(G) \leq 10$, если $2 \in \pi$;
- 4) либо бициклическими, либо свободными от четвертых степеней, то $l_{\pi}(G) \leq 3, l_{\pi}^{n}(G) \leq 4, l_{\pi}^{a}(G) \leq 18,$ если $2 \in \pi$.

Вспомогательные результаты

Через F(G) и $\Phi(G)$ обозначаются подгруппа Фиттинга и подгруппа Фраттини группы G соответственно; Z_m — циклическая группа порядка m; $O_p(G)$ и $O_{p'}(G)$ — наибольшие нормальные в G p- и p'-подгруппы соответственно. Полупрямое произведение нормальной в G подгруппы A и подгруппы B будем записывать: $A \mid B$.

В дальнейшем под $l^*_{\pi}(G)$ будем понимать либо всюду $l^a_{\pi}(G)$, либо всюду $l^n_{\pi}(G)$, либо всюду $l_{\pi}(G)$.

Лемма 1. [5] (лемма 1–2) Пусть $G - \pi$ -разрешимая группа. Тогда:

- 1) если H подгруппа группы G, то $l_{\pi}^{*}(H) \leq l_{\pi}^{*}(G)$;
- 2) если N нормальная подгруппа группы G, то

$$l_{\pi}^{*}(G/N) \leq l_{\pi}^{*}(G) u l_{\pi}^{*}(G) \leq l_{\pi}^{*}(G/N) + l_{\pi}^{*}(N);$$

- 3) если N нормальная π' -подгруппа группы G, то $l_{\pi}^{*}(G/N) = l_{\pi}^{*}(G)$;
- 4) если G и $V \pi$ -разрешимые группы, то $l_{\pi}^*(G \times V) = \max\{l_{\pi}^*(G), l_{\pi}^*(V)\};$
- 5) если N_1 и N_2 нормальные подгруппы в G, то

$$l_{\pi}^*(G/(N_1 \cap N_2)) \leq max\{l_{\pi}^*(G/N_1), l_{\pi}^*(G/N_2)\};$$

6) $l_{\pi}^{n}(G/\Phi(G)) = l_{\pi}^{n}(G) u l_{\pi}(G/\Phi(G)) = l_{\pi}(G)$.

Лемма 2. [5] (лемма 4) Пусть $G - \pi$ -разрешимая группа и t – натуральное число. Предположим, что $l_{\pi}^*(G/N) \le t$ для всех неединичных нормальных подгрупп N группы G, но $l_{\pi}^*(G) > t$. Тогда:

- 1) $O_{\pi'}(G) = 1$;
- 2) $\Phi(G) = 1$, если рассматривать $l_{\pi}^{n}(G)$ и $l_{\pi}(G)$;
- 3) в группе G существует только одна минимальная нормальная подгруппа;
- 4) $F(G) = O_p(G) = F(O_{\pi}(G))$ для некоторого простого $p \in \pi$;
- 5) $O_{v'}(G) = 1 u C_G(F(G)) \subseteq F(G)$.

Доказательство. Для π -длины $l_{\pi}(G)$ и нильпотентной π -длины $l_{\pi}^{n}(G)$ утверждение доказано в [2] (лемма VI.6.9) и [10] (лемма 2) соответственно.

1. Предположим, что $O_{\pi'}(G) \neq 1$. Тогда по условию леммы $l_{\pi}^{a}\big(G/O_{\pi'}(G)\big) \leq t$. Теперь из леммы 1 (2) заключаем, что

$$l_{\pi}^{a}(G) = l_{\pi}^{a}(G/O_{\pi'}(G)) \le t$$

противоречие. Поэтому предположение неверно, и $O_{\pi'}(G)=1$.

2. Допустим, что в группе G. существуют две различные минимальные нормальные подгруппы N_1 и N_2 . Тогда $N_1 \cap N_2 = 1$ и по условию

$$l_{\pi}^{a}(G/N_{1}) \leq t$$
 и $l_{\pi}^{a}(G/N_{2}) \leq t$.

Теперь из леммы 1 (5) заключаем, что

$$l_{\pi}^{a}(G) \leq \max\{l_{\pi}^{a}(G/N_{1}), l_{\pi}^{a}(G/N_{2})\} \leq t$$

противоречие. Поэтому допущение неверно, и в группе G существует только одна минимальная нормальная подгруппа.

3. Так как группа G -разрешима и $O_{\pi'}(G)=1$, то $O_{\pi}(G)\neq 1$. Подгруппа $O_{\pi}(G)$ разрешима и неединична, поэтому ее подгруппа Фиттинга $F\left(O_{\pi}(G)\right)$ отлична от единичной подгруппы и, очевидно,

$$F(O_{\pi}(G)) \subseteq F(G).$$

Из утверждения 1 следует, что F(G) является -подгруппой, поэтому

$$F(G) \subseteq F(O_{\pi}(G)), \ F(G) = F(O_{\pi}(G)).$$

Так как подгруппа F(G) нильпотентна, а согласно утверждению 2 в группе G минимальная нормальная подгруппа единственна, то

$$F(G) = F(O_{\pi}(G)) = O_{p}(G)$$

для некоторого простого $p \in \pi$.

4. Если $O_{p'}(G) \neq 1$, то в группе G будут существовать две различные минимальные нормальные подгруппы: -подгруппа из $O_p(G)$ и p'-подгруппа из $O_{p'}(G)$. Имеем противоречие с утверждением 2. Поэтому $O_{n'}(G) = 1$.

Так как подгруппа $O_p(G)$ нормальна в G, то $C_G\left(O_p(G)\right)$ нормальна в G. Предположим, что

$$C_G(O_p(G)) \nsubseteq O_p(G).$$

Тогда фактор-группа

$$C_G\left(O_p(G)\right)O_p(G)/O_p(G)$$

будет неединичной нормальной подгруппой фактор-группы $G/O_p(G)$. Поскольку $O_p\left(G/O_p(G)\right)=1$, то минимальная нормальная в $G/O_p(G)$ подгруппа $A/O_p(G)$ из

$$C_G(O_p(G))O_p(G)/O_p(G)$$

будет p'-группой. Пусть K-p'-холлова подгруппа из A. Тогда фактор-группа $KO_p(G)/O_p(G)$ будет p'-холловой подгруппой в группе $A/O_p(G)$, поэтому

$$A = KO_p(G) = K \times O_p(G).$$

Так как K холлова, то K характеристическая подгруппа в A, а подгруппа A нормальна в G. Следовательно, подгруппа K нормальна в G, и

$$K \subseteq O_{p'}(G) = 1.$$

Имеем противоречие. Поэтому допущение неверно, и

$$C_G(O_p(G)) \subseteq O_p(G).$$

Лемма доказана.

Лемма 3. [11] (лемма 1). Пусть G — бициклическая p-группа и N — дополняемая нормальная подгруппа группы G, то справедливы следующие утверждения:

- 1) если p = 2, то $|N/\Phi(N)| \le 4$,
- 2) если p > 2, то либо N = G, либо N циклическая.

Лемма 4. [7] (лемма 10). Если G — сверхразрешимая группа, то для любого множества π простых чисел $l_{\pi}(G) \leq 1$ и $l_{\pi}^{n}(G) \leq 2$.

Лемма 5. [11] (лемма 3). Если H — неприводимая разрешимая подгруппа группы GL(2,p), то сверхразрешимый корадикал подгруппы H является расширением циклической 2-группы порядка, делящего (p-1), с помощью подгруппы из элементарной абелевой группы порядка 4. Кроме того, производная длина подгруппы H не превышает H.

Лемма 6. [5] (лемма 3). *Если G* – π -разрешимая группа, то

$$d(G_{\pi}) \le l_{\pi}^{\alpha}(G) \le l_{\pi}(G)d(G_{\pi}).$$

Лемма 7. [11] (лемма 4). Пусть H — неприводимая разрешимая подгруппа группы GL(3,p). Тогда: для сверхразрешимого корадикала H^U подгруппы H возможны два случая:

- 1) H^{U} абелева порядка, делящего $(p-1)^{2}$;
- 2) $H^U = 3$ -замкнутая $\{2,3\}$ -подгруппа; её силовская 3-подгруппа является расширением циклической группы порядка, делящего p-1 с помощью подгруппы из элементарной абелевой группы порядка 9, а силовская 2-подгруппа является расширением циклической группы порядка, делящего p-1 с помощью подгруппы из элементарной абелевой группы порядка 4. Кроме того, производная длина подгруппы 4 не превышает 4.

Основные результаты

Теорема. Пусть $G - \pi$ -разрешимая группа. Если группа G обладает нормальным рядом, силовские подгруппы π -факторов которого являются:

- 1) циклическими, то $l_{\pi}(G) \leq 1$, $l_{\pi}^{n}(G) \leq l_{\pi}^{a}(G) \leq 2$;
- 2) метациклическими, то $l_{\pi}(G) \leq 2$, $l_{\pi}^{n}(G) \leq 4$, $l_{\pi}^{a}(G) \leq 10$, если $2 \in \pi$;
- 3) бициклическими, то $l_{\pi}(G) \leq 2, l_{\pi}^{n}(G) \leq 4, l_{\pi}^{a}(G) \leq 10$, если $2 \in \pi$;
- 4) либо бициклическими, либо свободными от четвертых степеней, то $l_{\pi}(G) \leq 3, l_{\pi}^{n}(G) \leq 4, l_{\pi}^{a}(G) \leq 18,$ если $2 \in \pi$.

Доказательство. Рассмотрим случай, когда силовские подгруппы π -факторов являются бициклическими, либо свободными от четвертых степеней.

Пусть ряд (1) группы G из условия теоремы. Покажем, что для произвольной нормальной подгруппы N условие теоремы переносится на фактор-группу G/N. Очевидно, что ряд

$$G/N = G_n/N \supseteq G_{n-1}N/N \supseteq \cdots \supseteq G_1N/N \supseteq G_0N/N = 1$$

будет нормальным рядом группы G/N с факторами

$$(G_{i+1}N/N)/(G_iN/N) \simeq G_{i+1}N/G_iN = G_{i+1}(G_iN)/G_iN \simeq$$

 $\simeq G_{i+1}/(G_{i+1}\cap G_iN)=G_{i+1}/(G_i(G_{i+1}\cap N))\simeq (G_{i+1}/G_i)/(G_i(G_{i+1}\cap N)/G_i),$ изоморфными фактор-группам групп G_{i+1}/G_i . Если фактор-группа G_{i+1}/G_i является π -группой, то и фактор-группа

$$(G_{i+1}N/N)/(G_iN/N)$$

является π -группой. Так как по свойствам силовских подгрупп справедливо равенство $(G/N)_p = G_p N/N,$

то силовские подгруппы π -факторов

$$(G_{i+1}N/N)/(G_iN/N)$$

будут являться циклическими (метациклическими, абелевыми, бициклическими, свободными от четвертых степеней).

Таким образом, условия теоремы переносятся на фактор-группы. Получим оценки π -длины и нильпотентной π -длины. По леммам 1 и 2,

$$O_{\pi'}(G) = \Phi(G) = 1,$$

и в группе G существует единственная минимальная нормальная p-подгруппа F, являющаяся подгруппой Фиттинга группы G, для некоторого $p \in \pi$, совпадающая со своим централизатором и дополняемая в группе G. Ясно, что G_1 является π -группой и $F \leq (G_1)_p$ для некоторого $p \in \pi$. Так как по условию $(G_1)_p$ либо бициклическая, либо свободна от четвертых степеней, то по лемме 3|F| = p или p^2 или p^3 .

Если |F|=p, то фактор-группа G/F изоморфна подгруппе циклической группы AutF, порядок которой равен p-1. Теперь группа G сверхразрешима, $l_{\pi}(G) \leq 1$ и $l_{\pi}^{n}(G) \leq 2$.

Пусть $2 \in \pi$. Тогда G — разрешимая группа. Если $|F| = p^2$, то фактор-группа G/F изоморфна подгруппе полной линейной группы GL(2,p). Если G/F — сверхразрешимая группа, то по лемме $4 l_{\pi}(G/F) \le 1$ и $l_{\pi}^{n}(G/F) \le 2$, отсюда $l_{\pi}(G) \le 2$ и $l_{\pi}^{n}(G) \le 3$. Если G/F — несверхразрешимая группа, то по лемме 5 сверхразрешимый корадикал H/F факторгруппы G/F является 2-группой. Учитывая, что $2 \in \pi$ заключаем, что $l_{\pi}(G) \le 2$ и $l_{\pi}^{n}(G) \le 4$.

Если $|F|=p^3$, то факторгруппа G/F изоморфна подгруппе полной линейной группы GL(3,p). Если G/F — сверхразрешимая группа, то по лемме 4 $l_\pi(G/F) \le 1$ и $l_\pi^n(G/F) \le 2$, отсюда $l_\pi(G) \le 2$ и $l_\pi^n(G) \le 3$. Если G/F — несверхразрешимая группа, то по лемме 4 сверхразрешимый корадикал H/F факторгруппы G/F является абелевой или 3-замкнутой $\{2,3\}$ -группой. Если H/F абелева, то $l_\pi(G) \le 3$ и $l_\pi^n(G/F) \le 4$. Пусть

H/F — 3-замкнутая {2,3}-группа. Если $3 \in \pi$, то $l_{\pi}(G) \le 2$ и $l_{\pi}^{n}(G) \le 4$. Если $3 \notin \pi$, то $l_{\pi}(G) \le 3$ и $l_{\pi}^{n}(G/F) \le 4$.

Оценки π -длины и нильпотентной π -длины в случаях, когда силовские подгруппы π -факторов являются циклическими, метациклическими, либо бициклическими, легко получить, используя вышеизложенное доказательство.

Из леммы 6 следует, что

$$l_{\pi}^{a}(G) \leq l_{\pi}(G)d(G_{\pi}),$$

где $d(G_{\pi})$ – производная длина π -холловой подгруппы G_{π} группы G. Из лемм 3 и 7 и проведенных выше рассуждений следует, что

- если силовские подгруппы π -факторов являются циклическими, то

$$l_{\pi}^{a}(G) \leq l_{\pi}(G)d(G_{\pi}) \leq 1 \cdot 2 = 2;$$

- если силовские подгруппы π -факторов являются метациклическими (бициклическими), то

$$l_{\pi}^{a}(G) \le l_{\pi}(G)d(G_{\pi}) \le 2 \cdot 5 = 10;$$

- если силовские подгруппы π -факторов являются бициклическими либо свободны от четвертых степеней, то

$$l_{\pi}^{a}(G) \leq l_{\pi}(G)d(G_{\pi}) \leq 3 \cdot 6 = 18.$$

Теорема доказана.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф17М-063).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. Минск : Выш. шк., 2006. 207 с.
- 2. Huppert, B. Endliche Gruppen I / B. Huppert. Berlin ; Heidelberg ; New York, $1967.-792\ s.$
- 3. Carter, R. Extreme Classes of finite soluble groups / R. Carter, B. Fischer, T. Hawkes // J. Algebra. 1968. Vol. 9, № 3. P. 285–313.
- 4. Монахов, В. С. Конечные группы с полунормальной холловой подгруппой / В. С. Монахов // Мат. заметки. 2006. Т. 80, № 4. Р. 573–581.
- 5. Грицук, Д. В. О производной π -длине π -разрешимой группы / Д. В. Грицук, В. С. Монахов, О. А. Шпырко // Вестн. БГУ. Сер. 1. − 2012. № 3. С. 90–95.
- 6. Грицук, Д. В. О конечных π -разрешимых группах с бициклическими силовскими подгруппами / Д. В. Грицук, В. С. Монахов, О. А. Шпырко // Проблемы физики, математики и техники. 2013. № 1(15). С. 61–66.
- 7. Монахов, В. С. О нильпотентной π -длине конечной π -разрешимой группы / В. С. Монахов, О. А. Шпырко // Дискрет. математика. 2001. Т. 13, № 3. С. 145–152.
- 8. Monakhov, V. S. On a finite group having a normal series whose factors have bicyclic Sylow subgroups / V. S. Monakhov, A. A. Trofimuk // Communications in algebra. $2011. N_{\text{0}} 39. P. 3178-3186$.
- 9. Трофимук, А. А. Конечные группы с бициклическими силовскими подгруппами в фиттинговых факторах / А. А. Трофимук // Тр. Ин-та математики и механики УрО РАН. $-2013.- \mathbb{N} \ 3 \ (19).- \mathrm{C.}\ 304-307.$
- 10. Монахов, В. С. О нильпотентной π -длине конечных π -разрешимых групп / В. С. Монахов, О. А. Шпырко // Дискр. математика. 2001. Т. 13, вып. 3. С. 145–152.
- 11. Монахов, В. С. О максимальных и силовских подгруппах конечных разрешимых групп / В. С. Монахов, Е. Е. Грибовская // Мат. заметки. -2001. Т. 70, № 4. С. 603-612.

Gritsuk D.V., Trofimuk A.A., Bondaruk T.V. The Invariants of A π -Soluble Group in which Sylow Subgroups of Factors Have Given Restrictions

We study π -soluble groups in which Sylow subgroups of factors have given restrictions. We obtain the estimates of the π -length, the nilpotent π -length, and the derived π -length for such groups. In particular, if a π -soluble group G has a normal series in which Sylow subgroups of π -factors are cyclic, then the π -length does not exceed 1, and the nilpotent π -length and the derived π -length do not exceed 2. If a π -soluble group G has a normal series in which Sylow subgroups of π -factors are bicyclic and G in the G -length does not exceed 2, the nilpotent G-length does not exceed 4, and the derived G-length does not exceed 10.