А.А. Юдов, О.В. Пинчук

О РЕДУКТИВНОСТИ ОДНОРОДНЫХ ПРОСТРАНСТВ С ФУНДАМЕНТАЛЬНОЙ ГРУППОЙ G – ГРУППОЙ ДВИЖЕНИЙ ПРОСТРАНСТВА ${}^{1}R_{4}$

В работе рассматривается пространство 1R_4 — четырехмерное псевдоевклидово пространство нулевой сигнатуры (пространство Минковского). Исследуются однородные пространства с фундаментальной группой Ли G — группой Ли движений пространства 1R_4 . Изучается класс таких пространств, имеющих в качестве группы стационарности трехмерную подгруппу Ли группы Ли H вращений пространства 1R_4 . Среди однородных пространств такого вида находятся все редуктивные пространства. В алгебрах Ли этих редуктивных пространств находятся все редуктивные дополнения.

Введение

Работа изучается геометрия однородных пространств. Исследование таких пространств является одной из актуальных проблем современной геометрии. В этом направлении выполняется много исследовательских работ. В Беларуси задачами такого характера занимались В.И. Ведерников, И.В. Белько, А.А. Бурдун, В.В. Балащенко, С.Г. Кононов, Л.К. Тутаев, А.С. Феденко и другие, а за рубежом – эстонский геометр Ю. Лумисте [1] и японские геометры К. Номидзу и Ш. Кобаяси [2-3]. Ю. Лумисте показал применимость редуктивных однородных пространств к проблеме расширения связностей на расслоениях с редуктивными однородными слоями. К. Номидзу и Ш. Кобаяси проводили широкое исследование редуктивных однородных пространств, в частности исследовали свойства инвариантной связности в редуктивных однородных пространствах. В данной работе исследуется специальный класс однородных пространств, фундаментальной группой для которых является группа ${
m Л}{
m u}$ ${
m G}$ движений четырёхмерного псевдоевклидова пространства нулевой пространства ${}^{1}R_{4}$. Рассматриваются такие однородные пространства, группа стационарности у которых трехмерная. Среди таких пространств находятся все редуктивные однородные пространства, в алгебрах Ли фундаментальных групп Ли которых находятся все соответствующие редуктивные дополнения.

Постановка задачи и метод исследования

Группа Ли G является полупрямым произведением группы Ли H стационарности точки пространства ${}^{1}R_{4}$ и абелевой группы T_{4} параллельных переносов пространства ${}^{1}R_{4}$: $G = H \otimes T_{4}$.

Алгебра Ли \overline{G} является полупрямой суммой алгебры Ли \overline{H} группы Ли H и коммутативной алгебры Ли группы Ли: $\overline{G}=\overline{H}\ \oplus\ au_4$.

Рассмотрим связные подгруппы Ли группы Ли G движений пространства ${}^{1}R_{4}$. Все связные подгруппы Ли группы Ли G, с точностью до сопряженности, перечислены в работе [4].

Тем самым классифицированы с точностью до изоморфизма все однородные пространства со структурной группой G. Ставится задача среди всех таких однород-ных пространств выделить редуктивные однородные пространства. В данной работе найдены все редуктивные однородные пространства вида G/G_i , где G_i – связная трех-параметрическая подгруппа Ли группы Ли H вращений пространства 1R_4 . Метод решения задачи состоит в том, что для исследуемого однородного пространства G/G_i рассматриваются соответствующие алгебры Ли \overline{G} и \overline{G}_i , затем находятся все трехмерные

подпространства алгебры Ли \overline{H} , инвариантные относительно ad $\overline{G_i}$. Среди таких пространств находятся дополнительные к $\overline{G_i}$. Эти пространства будут редуктивными дополнениями для однородного пространства H/G_i . Поскольку пространство G/H редуктивно, отсюда будет следовать редуктивность однородного пространства G/G_i . При этом можно показать, что всякое редуктивное однородное пространство G/G_i может быть получено таким образом.

Определение. Однородное пространство H/G_i называется редуктивным, если алгебра Ли \overline{H} группы Ли H распадается в прямую сумму подпространств:

$$\overline{H} = m + \overline{G_i} , \qquad (1)$$

причем подпространство т инвариантно относительно $ad\overline{G_i}$, где $ad\overline{G_i}$ – присоединенное представление алгебры Ли $\overline{G_i}$.

Для нахождения редуктивных дополнений используем следующий способ. Пусть a_1, a_2, a_3 — базис алгебры Ли $\overline{G_i}$ группы Ли G_i , принадлежащей группе ли H. Рассмотрим трехмерное векторное подпространство m алгебры Ли \overline{H} , образованное векторами b_1, b_2, b_3 , т.е. $m = \{b_1, b_2, b_3\}$. Для этого подпространства m потребуем выполнимость условия инвариантности относительно ada_i , i=1,2,3. Т.е. выполнимость условий:

$$[a_i, b_i] = \alpha_{i1}b_1 + \alpha_{i2}b_2 + \alpha_{i3}b_3, \quad j = 1, 2, 3.$$
 (2)

Систему (2) будем называть системой инвариантности пространства m или просто системой инвариантности. Раскладывая левую и правую части по базису i_5 , i_6 , i_7 , i_8 , i_9 , i_{10} [5] алгебры Ли \overline{H} , получим систему инвариантности в виде системы алгебраи-ческих уравнений. Пусть например $b_j = \beta_{j5}i_5 + \ldots + \beta_{j10}i_{10}$. Элементарными преобразова-ниями можно от базиса $\{b_1, b_2, b_3\}$ перейти к базису $\{b'_1, b'_2, b'_3\}$ с более простыми ко-эффициентами $\beta_{j\kappa}$. Для этого придется рассмотреть 20 случаев. При этом система инва-риантности упростится. Пусть система инвариантности решена и в итоге получены трехмерные пространства m_1, \ldots, m_p , инвариантные относительно $ad\overline{G_i}$. Среди этих пространств нужно выбрать такие, которые удовлетворяют условию (1). Такие пространства m_i и будут искомыми редуктивными дополнениями.

Нахождение редуктивных пространств H/G_i

Все трехмерные подгруппы Ли группы Ли H известны [4]. Запишем алгебры Ли для этих подгрупп с помощью базисов: $\overline{G}_8 = \{i_5 - i_8, i_7 + i_{10}, i_6\}, \overline{G}_9 = \{i_5 - i_8, i_7 + i_{10}, i_9\}, \overline{G}_{10} = \{i_5 - i_8, i_7 + i_{10}, i_9 + \kappa i_6\}, \overline{G}_{11} = \{i_8, i_9, i_{10}\}, \overline{G}_{12} = \{i_5, i_6, i_8\}.$

Рассмотрим оператор i_9 . Будем искать трехмерные инвариантные подпростран-ства алгебры Ли \overline{H} , инвариантные относительно $ad(i_9)$. Достаточно рассмотреть следующие случаи:

 $\{i_5+\lambda i_9+\mu i_6+\nu i_8,i_{10}+\sigma i_9+s i_6+t i_8,i_7+p i_9+q i_6+r i_8\}.$ Система инвариантности имеет вид: vs-q=0, vt-r=0, $v\sigma-p=0$, ts=0, $t^2=1$, $t\sigma=0$, rs=0, tr=0, $r\sigma=0$. Из пятого уравнения следует $t=\pm 1$. Тогда из четвертого, шестого и восьмого уравнения следует s=0, $\sigma=0$ и r=0, а из первого, второго и третьего: q=0, v=0, p=0. Получим инвариантные пространства в виде: $\{i_5+\lambda i_9+\mu i_6,i_{10}\pm i_8,i_7\}$.

- 2^{0} . Инвариантные пространства ищем в виде: $\{i_5+\lambda i_7+\mu i_6+\nu i_8,i_{10}+\sigma i_7+s i_6+t i_8,i_9+p i_6+q i_8\}$. Система инвариантности противоречива.
- 3^{0} . Инвариантные пространства ищем в виде: $\{i_{5}+\lambda i_{7}+\mu i_{10}+\nu i_{8},i_{10}+\sigma i_{7}+s i_{9}+t i_{8},i_{6}+p i_{8}\}$. Система инвариантности противоречива.
- 4^{0} . Инвариантные пространства ищем в виде: $\{i_5+\lambda i_7+\mu i_9+\nu i_6,i_{10}+\sigma i_7+s i_9+t i_6,i_7\}$. Система инвариантности противоречива.
- 5^{0} . Инвариантные пространства ищем в виде: $\{i_{5}+\lambda i_{10}+\nu i_{8}+\mu i_{6},i_{7}+s i_{8}+\sigma i_{6},i_{9}+p i_{6}+q i_{8}\}$. Система инвариантности имеет вид: $\sigma=0,\ s=0, \nu=0, \mu=0, \lambda=0, q=0$. Получим инвариантные пространства в виде: $\{i_{5},i_{7},i_{9}+p i_{6}\}$.
- 6^{0} . Инвариантные пространства ищем в виде: $\{i_{5}+\lambda i_{10}+\nu i_{8}+\mu i_{6},i_{7}+s i_{8}+\sigma i_{9},i_{6}+p i_{8}\}$ Система инвариантности имеет вид:, $\nu=0$, $s=\lambda$, $p=0, \mu=0, \lambda=0, \sigma=0, q=0$. Получим инвариантные пространства в виде: $\{i_{5},i_{7},i_{6}\}$.
- 7°. Инвариантные пространства ищем в виде: $\{i_5 + \lambda i_{10} + \nu i_6 + \mu i_9, i_7 + s i_6 + \sigma i_9, i_8\}$. Система инвариантности противоречива.
- 8° . Инвариантные пространства ищем в виде: $\{i_5 + \lambda i_{10} + \nu i_8 + \mu i_7, i_9 + \sigma i_8, i_6 + p i_8\}$. Система инвариантности противоречива.
- 9^0 . Инвариантные пространства ищем в виде: $\left\{i_5 + \lambda i_{10} + \nu i_6 + \mu i_7, i_9 + \sigma i_6, i_8\right\}$ Система инвариантности противоречива.
- 10^{0} . Инвариантные пространства ищем в виде: $\left\{i_{5}+\lambda i_{10}+\nu i_{9}+\mu i_{7},i_{6},i_{8}\right\}$ Система инвариантности противоречива.
- 11^{0} . Инвариантные пространства ищем в виде: $\{i_{10}+\lambda i_{6}+\mu i_{8},i_{7}+\sigma i_{6}+s i_{8},i_{9}+q i_{8}+p i_{6}\}$. Система инвариантности имеет следующий вид: $\mu\lambda=0, \mu^{2}=1, s\lambda+\sigma=0, s\mu+s=0, q\lambda=0, q\mu=0$. Из второго уравнения следует $\mu=\pm 1$, из четвертого s=0, следовательно $\sigma=0, \lambda=0, q=0$. Получим инвариантное пространство в виде: $\{i_{10}\pm i_{8},i_{7},i_{9}+p i_{6}\}$.
- 12^{0} . Инвариантные пространства ищем в виде: $\{i_{10} + \lambda i_{9} + \mu i_{8}, i_{7} + \sigma i_{9} + s i_{8}, i_{6} + p i_{8}\}$ Система инвариантности противоречива.
- 13°. Инвариантные пространства ищем в виде: $\{i_{10} + \lambda i_9 + \mu i_6, i_7 + \sigma i_9 + s i_6, i_8\}$ Система инвариантности противоречива.
- 14^{0} . Инвариантные пространства ищем в виде: $\{i_{10}+\lambda i_{7}+\mu i_{8},i_{9}+\sigma i_{8},i_{6}+p i_{8}\}$. Система инвариантности имеет вид: $\lambda=0$, $\mu^{2}=1,\mu\lambda=0,\sigma\lambda=0,\sigma\mu=0,\lambda p=0,p\mu=0$. Из второго уравнения следует $\mu=\pm 1$. Получим инвариантные пространства в виде: $\{i_{10}\pm i_{8},i_{9},i_{6}\}$.
- 15^{0} . Инвариантные пространства ищем в виде: $\{i_{10}+\lambda i_{7}+\mu i_{6},i_{9}+\sigma i_{6},i_{8}\}$. Система инвариантности имеет вид: $\lambda=0$, $\mu=0$. Получим инвариантные пространства в виде: $\{i_{10},i_{9}+\sigma i_{6},i_{8}\}$.
 - 16^{0} . Инвариантные пространства ищем в виде: $\left\{i_{10}+\lambda i_{7}+\mu i_{9},i_{6},i_{8}\right\}$.

Система инвариантности имеет вид: $\lambda = 0$, $\mu = 0$. Получим инвариантные пространства в виде: $\{i_{10}, i_6, i_8\}$.

- 17^{0} . Инвариантные пространства ищем в виде: $\{i_{7}+\lambda i_{8},i_{9}+\sigma i_{8},i_{6}+pi_{8}\}$ Система инвариантности противоречива.
- 18^{0} . Инвариантные пространства ищем в виде: $\{i_{7}+\lambda i_{6},i_{9}+\sigma i_{6},i_{8}\}$ Система инвариантности противоречива.

 19^{0} . Инвариантные пространства ищем в виде: $\{i_{7}+\lambda i_{9},i_{6},i_{8}\}$. Система инвариантности противоречива.

 20° . Инвариантные пространства ищем в виде: $\{i_9, i_6, i_8\}$. Система инвариантно-сти противоречива.

Таким образом, получена

Теорема 1. Относительно adi_9 инвариантны только следующие трехмерные подпространства алгебры \overline{H}

1.
$$\{i_5 + \lambda i_9 + \mu i_6, i_{10} + i_8, i_7\}$$
, 2. $\{i_5 + \lambda i_9 + \mu i_6, i_{10} - i_8, i_7\}$, 3. $\{i_5, i_7, i_9 + p i_6\}$, 4. $\{i_5, i_7, i_6\}$,

5.
$$\{i_{10}+i_{8},i_{7},i_{9}+pi_{6}\}$$
, 6. $\{i_{10}-i_{8},i_{7},i_{9}+pi_{6}\}$, 7. $\{i_{10}+i_{8},i_{9},i_{6}\}$, 8. $\{i_{10}-i_{8},i_{9},i_{6}\}$,

9.
$$\{i_{10}, i_9 + \sigma i_6, i_8\}$$
, 10. $\{i_{10}, i_6, i_8\}$.

Рассматривая аналогично операторы adi_5 , adi_6 , adi_8 , adi_{10} , $ad(i_5-i_8)$, $ad(i_7+i_{10})$, $ad(i_9+ki_6)$, приходим к следующим теоремам.

Теорема 2. Относительно adi_6 инвариантны только следующие трехмерные подпространства алгебры \overline{H}

$$1. \left\{ i_{5} + i_{8}, i_{10} + t i_{8}, i_{7} + t i_{8} \right\}, 2. \left\{ i_{5} - i_{8}, i_{10} + t i_{8}, i_{7} - t i_{8} \right\}, 3. \left\{ i_{5} \pm i_{8}, i_{7} + i_{10}, i_{9} + p i_{6} \right\}, 4.$$

$$\left\{ i_{5} \pm i_{8}, i_{7} - i_{10}, i_{9} + p i_{6} \right\}, 5. \left\{ i_{5}, i_{10} \pm i_{7}, i_{8} \right\}, 6. \left\{ i_{5} + \lambda i_{7} \pm \sqrt{1 + \lambda t} i_{8}, i_{10} + t i_{8} \pm \sqrt{1 + \lambda t} i_{7}, i_{9} + p i_{6} \right\}, 7. \left\{ i_{5} + \lambda i_{10}, i_{7} - \frac{1}{\lambda} i_{8}, i_{9} + t i_{6} \right\}, 8. \left\{ i_{5} + \lambda i_{10}, i_{7} - \frac{1}{\lambda} i_{8}, i_{6} \right\}, 9. \left\{ i_{5} + \lambda i_{10} \pm \lambda i_{9}, i_{7}, i_{8} \right\}, 10. \left\{ i_{5}, i_{9} + \sigma i_{6}, i_{8} \right\}, 11. \left\{ i_{5}, i_{6}, i_{8} \right\}, 12. \left\{ i_{10}, i_{7}, i_{9} + s i_{6} \right\}, 13. \left\{ i_{10}, i_{7}, i_{6} - i_{8} \right\}, 14. \left\{ i_{10} \pm i_{7}, i_{9}, i_{6} \right\},$$

15.
$$\{i_5 \pm i_8, i_{10} + i_7, i_6\}$$
, 16. $\{i_5 \pm i_8, i_{10} - i_7, i_6\}$.

Теорема 3. Относительно adi_5 инвариантны только следующие трехмерные подпространства алгебры \overline{H}

1.
$$\{i_{5}, i_{10}, i_{7} \pm i_{9} + qi_{6} \pm qi_{8}\}$$
, 2. $\{i_{5}, i_{10}, i_{6} \pm i_{8}\}$, 3. $\{i_{5} + \lambda i_{10}, i_{7} + \sigma i_{6} + si_{8}, i_{9} + si_{6} + \sigma i_{8}\}$, 4. $\{i_{5} + \lambda i_{10}, i_{7} \pm i_{9}, i_{6} \pm i_{8}\}$, 5. $\{i_{5} + \lambda i_{10}, i_{7} \mp i_{9} + si_{8}, i_{6} \pm i_{8}\}$, 6. $\{i_{5}, i_{6}, i_{8}\}$, 7. $\{i_{10}, i_{6}, i_{8}\}$, 8. $\{i_{7} + i_{9}, i_{6}, i_{8}\}$, 9. $\{i_{7} + \lambda i_{8}, i_{9} \mp i_{8}, i_{6} \pm i_{8}\}$, 10. $\{i_{10}, i_{7} \pm i_{9}, i_{6} \pm i_{8}\}$, 11. $\{i_{10}, i_{7} \pm i_{9} + \sigma i_{8}, i_{6} \mp i_{8}\}$, 12. $\{i_{10}, i_{7} + \nu i_{6} + \sigma i_{8}, i_{9} + \sigma i_{6} + \nu i_{8}\}$

Теорема 4. Относительно adi_{10} инвариантны только следующие трехмерные подпространства алгебры \overline{H}

1.
$$\{i_5 + \lambda i_{10}, i_7 + p i_9, i_6 + p i_8\}$$
, 2. $\{i_5 + \lambda i_{10}, i_9, i_8\}$, 3. $\{i_{10}, i_9, i_8\}$, 4. $\{i_{10}, i_7, i_6\}$, 5. $\{i_7 + \lambda i_9, i_6, i_8\}$, 6. $\{i_{10}, i_7 + \sigma i_6 + s i_8, i_9 + p i_6 - \sigma i_8\}$, 7. $\{i_5, i_7, i_6\}$.

Теорема 5. Относительно adi_8 инвариантны только следующие трехмерные подпространства алгебры \overline{H}

1.
$$\{i_5 + \lambda i_9 \pm \sqrt{\lambda s - 1}i_6, i_{10} \pm \sqrt{\lambda s - 1}i_9 + si_6, i_7 + ri_8\},$$
 2. $\{i_5 + \lambda i_{10}, i_7 + si_8, i_9 - \frac{1}{\lambda}i_6\},$

3.
$$\{i_5, i_7 + si_8, i_6\}$$
, 4. $\{i_5 + \lambda i_{10}, i_9 - \frac{1}{\lambda} i_6, i_8\}$, 5. $\{i_5, i_6, i_8\}$, 6. $\{i_{10}, i_7, i_9\}$, 7. $\{i_{10}, i_9, i_8\}$,

8. $\{i_{10},i_{7},i_{6}\}$, 9. $\{i_{5},i_{7},i_{6}\}$, 10. $\{i_{7},i_{9},i_{8}\}$.

Для оператора $ad(i_5 - i_8)$ получим следующую теорему.

Теорема 6. Относительно $ad(i_5-i_8)$ инвариантны только следующие трехмерные подпространства алгебры \overline{H}

1.
$$\{i_5 - i_8, i_{10} + i_7, i_9\}$$
, 2. $\{i_5 + i_8, i_{10} + i_7, i_6\}$, 3. $\{i_5 + i_8, i_{10} + i_7 + ti_8, i_6\}$,

4.
$$\{i_5 \pm \sqrt{2}i_6 + i_8, i_{10} + i_7, i_9 + pi_6 \pm \sqrt{2}pi_8\}$$
, 5. $\{i_5, i_6, i_8\}$, 6. $\{i_{10}, i_7, i_9\}$.

Теорема 7. Относительно $ad(i_7 + i_{10})$ инвариантны только следующие трехмерные подпространства алгебры \overline{H} :

1.
$$\{i_{10}, i_{7}, i_{6}\}$$
, 2. $\{i_{5}, i_{9}, i_{8}\}$, 3. $\{i_{5} + \lambda i_{10}, i_{7} - \frac{1}{\lambda}i_{8}, i_{9} + \lambda i_{6}\}$, 4. $\{i_{5} - i_{8}, i_{10} + i_{7} + pi_{9}, i_{6} + pi_{8}\}$, 5. $\{i_{5} + \lambda i_{7} - i_{8}, i_{10} + i_{7}, i_{6}\}$.

Теорема 8. Относительно $ad(i_9+ki_6)$ инвариантны только следующие трехмерные подпространства алгебры Ли \overline{H}

$$1. \left\{ i_{5} + i_{10}, i_{7}, i_{9} + pi_{6} \right\}, \quad 2. \quad \left\{ i_{5} + i_{10}, i_{7} + \lambda i_{8}, i_{6} \right\}, \quad 3. \quad \left\{ i_{5} - \frac{1}{k} i_{10}, i_{9}, i_{6} \right\}, \quad 4. \quad \left\{ i_{5} + i_{10}, i_{9} + \sigma i_{6}, i_{8} \right\},$$

$$5. \quad \left\{ i_{5} - i_{10}, i_{9} + \sigma i_{6}, i_{8} \right\}, \quad 6. \quad \left\{ i_{10}, i_{7} - \frac{1}{k} i_{8}, i_{9} + pi_{6} \right\}, \quad 7. \quad \left\{ i_{10}, i_{9} + \sigma i_{6}, i_{8} \right\}.$$

Вернемся к вопросу о редуктивности однородных пространств.

Из теорем 6 и 7 следует, что у операторов $ad(i_5 - i_8)$ и $ad(i_7 + i_{10})$ нет общих инвариантных трёхмерных подпространств алгебры Ли \overline{H} . Поэтому алгебры Ли \overline{G}_9 , \overline{G}_8 , \overline{G}_{10} не имеют в алгебре Ли \overline{H} редуктивных дополнений. Таким образом, получим теорему:

Теорема 9. Однородные пространства H/G_8 , H/G_9 , H/G_{10} не являются редуктивными.

Рассмотрим подалгебру $G_{11}=\{i_8,\ i_9,\ i_{10}\}$. Тогда из теоремы 2 и теоремы 4 следует, что для adi_8 и adi_{10} одновременно инвариантными являются только следующие трехмерные пространства $\{i_5,i_7,i_6\}$ и $\{i_{10},i_7,i_6\}$, из которых только пространство $\{i_5,i_7,i_6\}$ является дополнительным к алгебре G_{11} . это же пространство инвариантно и относительно adi_9 . Следовательно, получена теорема:

Теорема 10. Однородное пространство H/G_{11} является редуктивным. Единственным редуктивным дополнением для подалгебры Ли \overline{G}_{11} в алгебре Ли \overline{H} является подпространство $\{i_5,i_7,i_6\}$.

Рассмотрим однородное пространство H/G_{12} . Из теорем 3 и 5 следует, что единственными трехмерными подпространствами алгебры Ли \overline{H} , инвариантными относительно $ad\overline{G}_{12}$, являются подпространства $\{i_5,i_6,i_8\}$ и $\{i_{10},i_7,i_9\}$. Из них только $\{i_{10},i_7,i_9\}$ является дополнительным в алгебре Ли \overline{H} к \overline{G}_{12} . Таким образом, получили теорему.

Теорема 11. Однородное пространство H/G_{12} является редуктивным.

Итоги исследований подведём в виде следующей теоремы.

Единственным редуктивным дополнением для подалгебры Ли \overline{G}_{12} в алгебре Ли \overline{H} является подпространство $\{i_{10},i_7,i_9\}$.

Теорема 12. Однородные пространства H/G_{11} и H/G_{12} являются редуктивными. Редуктивным дополнением в алгебре Ли \overline{H} для подалгебры Ли \overline{G}_{11} является только подпространство $\{i_5,i_7,i_6\}$, а редуктивным дополнением в алгебре Ли \overline{H} для подалгебры Ли \overline{G}_{12} является только подпространство $\{i_{10},i_7,i_9\}$. Однородные пространства H/G_{3} , H/G_{9} , H/G_{10} не являются редуктивными.

- 1. Лумисте, Ю. Связности в главных расслоениях / Ю. Лумисте // I респ. конф. математиков Белоруссии : науч. тр. Минск, 1965. С. 247–258.
- 2. Кобаяси, Ш. Основы дифференциальной геометрии : в 2 т. / Ш. Кобаяси, К. Номидзу. – М. : Наука, 1981. – Т.1. – 343 с.
- 3. Кобаяси, Ш. Основы дифференциальной геометрии : в 2 т. / Ш. Кобаяси, К. Номидзу. М. : Наука, 1981. T.2. 413 с.
- 4. Белько, И.В. Подгруппы группы Лоренца-Пуанкаре / И.В. Белько // Изв. АН БССР. Сер. физ.-мат. -1971. -№ 1. C. 16–21.
- 5. Корчук, О.В. Исследование и классификация редуктивных однородных пространств с группой вращений пространства 1R_4 с четырехмерными группами стационарности / О.В. Корчук, А.А. Юдов // Современные проблемы математического моделирования и новые образовательные технологии в математике : материалы респ. науч.—практ. конф., Брест, 23 апреля 2009 г. / Брест. гос. ун-т им. А.С. Пушкина. Брест, 2009. С. 182—183.

A. Yudov, O. Pinchuk. About the Reduction of Homogenous Spaces with Fundamental Group G – Group of Motions of Space 1R_4

In the article the space ${}^{1}R_{4}$ – 4-dimensional pseudoeuclidous space of the zero signature is considered. Homogenous spaces with fundamental group Lee G – group Lee of motions space ${}^{1}R_{4}$ are dealt with. The class of such spaces, having as a group of stability a 3-dimensional subgroup Lee of group Lee H of rotations of space ${}^{1}R_{4}$ is investigated. Homogeneous spaces of such kind are all reductive homogeneous spaces. All reductive supplements are in algebras Lee of reductive spaces.

Рукапіс паступіў у рэдкалегію 21.02.2011 г.