УДК 539.21

В.А. Лиопо, А.В. Сабуть, С.С. Секержицкий, В.А. Струк

ХАРАКТЕРИСТИКИ КООРДИНАЦИОННЫХ СФЕР ШАРОВЫХ УПАКОВОК

Для гексагональной плотнейшей упаковки (ГПУ) и гранецентрированной кубической (ГЦК), а также для объемноцентрированной кубической (ОЦК) решетки рассчитаны радиусы координационных сфер, их координационные числа (КЧ) и число атомов в частице, ограниченной N-ой координационной сферой. Расчет выполнен для сфер до сотого номера включительно. Построены диаграммы КЧ и ретикулярных плотностей координационных сфер.

При исследовании веществ с изодесмическими межатомными связями применимы модели шаровых упаковок [1; 2]. Наиболее простым вариантом таких структур являются металлы, которые используются в том числе и в качестве нанонаполнителей при создании композиционных материалов, например, на полимерной основе [3]. Формировать нанокристалл металла можно двумя способами: диспергированием крупного образца или выращиванием наночастиц из расплава, раствора или конденсацией паров. В этом случае метод построения шаровых упаковок позволяет установить габитус наночастиц любого размера. Для упаковок шаровых частиц, в том числе и атомов произвольного типа в объеме, применимо понятие коэффициент компактности, или коэффициент упаковки:

$$P = \frac{\sum_{j=1}^{N} W_j}{V},\tag{1}$$

где W_{j} – объем j -той частицы, N – число частиц, V – объем системы N частиц.

Если рассматривается шаровая упаковка из N частиц с размерами r_j , а n_j — это число j-ых шаров, то

$$P = \frac{4}{V} \pi \sum_{j=1}^{m} n_j r_j^3,$$

где m — число различных классов крупности, т.е. j — 1...m . Очевидно, что $\sum n_j = N$, где N — общее число всех частиц в системе. Если структура будет находится в состоянии, когда P имеет максимальное значение, то это состояние называется плотнейшей упаковкой.

Для одного и двух слоев шаров плотнейшая упаковка осуществляется единственно возможными взаимораспределениями шаров, приведенными на рисунке 1.

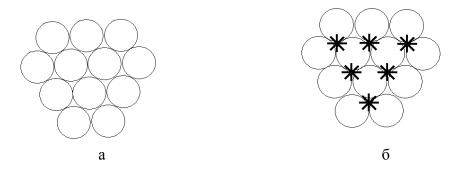


Рисунок 1 – Плоская плотнейшая упаковка (a), ***** − шары второго слоя (б)

Шары третьего слоя могут быть уложены в лунки шаров второго слоя двумя способами. Центры шаров третьего слоя находятся в лунках шаров второго слоя, но над центрами шаров первого слоя (рисунок 2, а). То есть последовательность шаров в этой упаковке может быть представлена как ... АВАВАВ..... Упаковка шаров такого типа называется гексагональной плотнейшей упаковкой (ГПУ). Во втором типе плотнейших шаровых упаковок центры шаров третьего слоя находятся в лунках шаров второго слоя над пустотами-лунками шаров первого слоя (рисунок 2, б). Последовательность слоев в такой упаковке имеет видАВСАВС...., а сама эта упаковка называется гранецентрированной кубической (ГЦК). Обе эти плотнейшие упаковки изображены на рисунке 3.

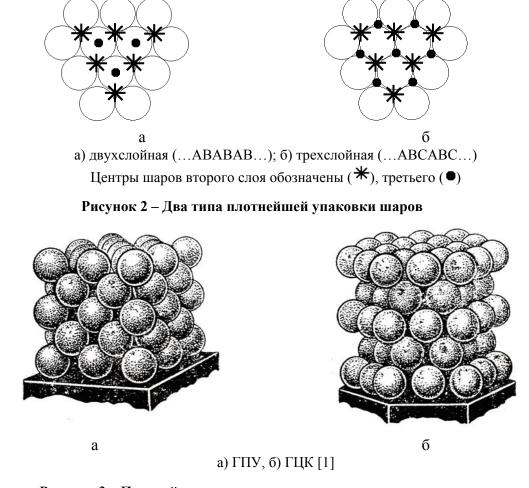
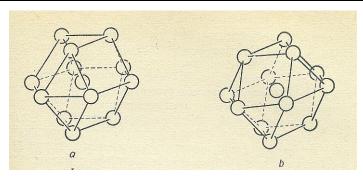



Рисунок 3 – Плотнейшие упаковки шаров одинакового размера

Как следует из рисунков 2 и 3, различия в упаковке слоев приводят к изменению взаиморасположения атомов, которые моделируются шарами, уже в ближайшем окружении атома, принятого за центральный. Расстояние от центрального атома до всех соседних атомов одинаковое, то есть центры соседних атомов лежат на сфере, которая называется координационной сферой. Число атомов на координационной сфере называется координационным числом. Радиус первой координационной сферы равен диаметру атома, а координационное число равно 12. Расположения шаров на первой координационной сфере в ГПУ- и ГЦК-упаковках приведены на рисунке 4.

а) ГПУ; b) ГЦК

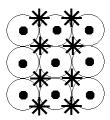
Рисунок 4 – Первая координационная сфера [2]

Атомы, прилегающие к атомам первой координационной сферы, образуют вторую координационную сферу, которая характеризуется своим координационным числом. В условиях плотнейшей упаковки атомы не будут размещаться на n-ой координационной сфере, пока не завершено наполнение предыдущей координационной сферы.

Если координационное число j-той сферы n_j , а ее радиус – r_j , то отношение

$$\rho_j = n_j / 4\pi r_j^2 \tag{2}$$

определяет плотность атомов на поверхности j-той координационной сферы и называется ретикулярной сферической плотностью.

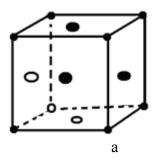

Коэффициенты компактности указанных шаровых упаковок одинаковы и равны

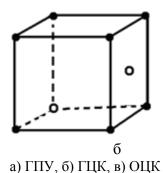
$$P = \frac{1}{6}\pi\sqrt{2} = 0.74. \tag{3}$$

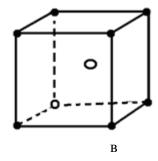
Это значение коэффициента компактности является максимальным для плотнейших упаковок шаров с одинаковыми размерами.

В небольших объемах, когда центром упаковки является не отдельный атом, а четыре, образующие тетраэдр, то следующая координация определяется шарами, помещенными в лунки, образованными тремя шарами грани тетраэдра. Следующие шары располагаются в лунке между тремя шарами внутренней сетки, то есть построение упаковки происходит в режиме создания тетраэдров. Такое построение называется «жадным алгоритмом», и коэффициент компактности в этом случае будет превышать 0,74. Но это условие будет справедливо для сравнительно небольшого объема системы, то есть для небольшого числа атомов-шаров. При дальнейшем увеличении числа шаров коэффициент компактности начинает уменьшаться и затем станет меньше 0,74.

Многие металлы характеризуются расположением атомов либо по ГЦК-, либо по ГПУ-мотивам. Но есть еще одна упаковка, которая не является плотнейшей, но встречается достаточно часто. Схема этой упаковки приведена на рисунке 5. Название такой упаковки – объемноцентрированная кубическая, или ОЦК.




ж – центры атомов второго слоя, ● – центры атомов третьего слоя


Рисунок 5 – Схема ОЦК-упаковки

Коэффициент компактности ОЦК-упаковки равен:

$$p = \frac{\pi\sqrt{3}}{8} = 0.68$$

Центры упаковок обозначены (●) в видимой и (•) в «невидимой» частях ячейки

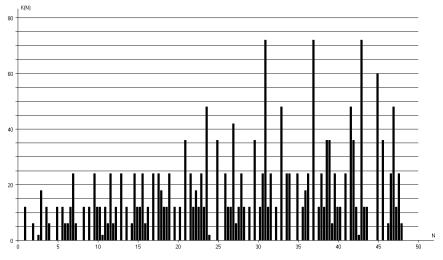
Рисунок 6 – Ячейки кристаллов с различными упаковками атомов

На рисунке 6 приведены ячейки кристаллов для ГПУ-, ГЦК- и ОЦК-упаковок. Для всех этих упаковок рассчитаны квадраты радиусов координационных сфер (R^2) , соответствующие им координационные числа (K) и число атомов (C) внутри соответствующей координационной сферы [4].

Таблица 1 – Характеристики координационных сфер

\mathbb{R}^2	К	С	R^2	К	C	\mathbb{R}^2	К	C	R^2	К	C
1	12	12	41/3	12	304	25	36	762	113/3	12	1368
2	6	18	43/3	6	310	26	24	786	38	24	1392
8/3	2	20	44/3	24	334	79/3	12	798	115/3	12	1404
3	18	38	15	12	346	80/3	12	810	116/3	36	1440
11/3	12	50	46/3	12	358	27	42	852	39	36	1476
4	6	56	47/3	24	382	82/3	6	858	118/3	6	1482
5	12	68	16	6	388	83/3	12	870	119/3	24	1506
17/3	12	80	49/3	12	400	28	24	894	40	12	1518
6	6	86	17	24	424	85/3	12	906	121/3	12	1530
19/3	6	92	53/3	24	448	29	12	918	41	24	1554
20/3	12	104	18	18	466	89/3	36	954	125/3	48	1602
7	24	128	55/3	12	478	91/3	12	966	42	36	1638
22/3	6	134	56/3	12	490	92/3	24	990	127/3	12	1650
25/3	12	146	19	24	514	31	72	1062	128/3	2	1652
9	12	158	59/3	12	526	94/3	12	1074	43	72	1724
29/3	24	182	61/3	12	538	95/3	24	1098	130/3	12	1736
10	12	194	21	36	574	97/3	12	1110	131/3	12	1748
31/3	12	206	65/3	24	598	33	48	1158	45	60	1808
32/3	2	208	22	12	610	101/3	24	1182	137/3	36	1844
11	12	220	67/3	18	628	34	24	1206	139/3	6	1850
34/3	6	226	68/3	12	640	35	24	1230	140/3	24	1874
35/3	24	250	23	24	664	107/3	12	1242	47	48	1922
12	6	256	70/3	12	676	36	18	1260	142/3	12	1934
37/3	12	268	71/3	48	724	109/3	24	1284	143/3	24	1958
13	24	292	24	2	726	37	72	1356	48	6	1964

В трехслойной простейшей упаковке радиус n-ой координационной сферы $R_n = d\sqrt{n}$, где d — диаметр шара. В нашем случае принято значение d =1. Для ГЦК упаковок квадрат радиуса координационной сферы равен ее номеру. Как следует из таблицы 2, некоторые координационные сферы ГЦК-упаковки оказываются незаполненными, то есть их координационные числа равны нулю (№ 30, 46, 56, 62, 78, 94). Для ГПУ- и ОЦК-структур координационные сферы с нулевыми координационными числами не приводятся. Для этих структур зависимость радиуса координационной сферы от ее номера носит более сложный характер, чем для ГЦК-решеток. Для трех рассматриваемых упаковок в таблицах 1—3 приведены квадраты радиусов координационных сфер (R^2) в порядке возрастания их номеров, а также координационные числа при заполнении внешней координационной сферы (K) и число атомов в кластере (C). Для каждой из структур приведены характеристики 100 координационных сфер, сформированных вокруг центрального одиночного атома сферической формы.


Таблица 2 – Характеристики координационных сфер ГЦК-структур

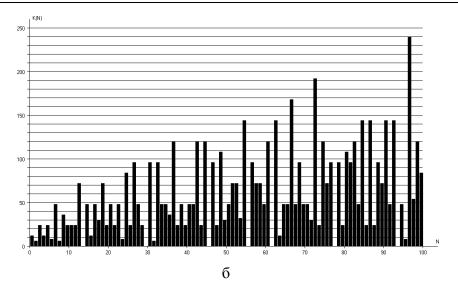

\mathbb{R}^2	К	C	R^2	К	С	R^2	К	C	R^2	К	С
1	12	12	26	24	790	51	48	2170	76	72	3996
2	6	18	27	96	886	52	72	2242	77	96	4092
3	24	42	28	48	934	53	72	2314	78	0	4092
4	12	54	29	24	958	54	32	2346	79	96	4188
5	24	78	30	0	958	55	144	2490	80	24	4212
6	8	86	31	96	1054	56	0	2490	81	108	4320
7	48	134	32	6	1060	57	96	2586	82	96	4416
8	6	140	33	96	1156	58	72	2658	83	120	4536
9	36	176	34	48	1204	59	72	2730	84	48	4588
10	24	200	35	48	1252	60	48	2778	85	144	4728
11	24	224	36	36	1288	61	120	2898	86	24	4752
12	24	248	37	120	1408	62	0	2898	87	144	4896
13	72	320	38	24	1432	63	144	3042	88	24	4920
14	0	320	39	48	1480	64	12	3054	89	96	5016
15	48	368	40	24	1504	65	48	3102	90	72	5088
16	12	380	41	48	1552	66	48	3150	91	144	5232
17	48	428	42	48	1600	67	168	3318	92	48	5280
18	30	458	43	120	1720	68	48	3366	93	144	5424
19	72	530	44	24	1744	69	96	3462	94	0	5424
20	24	554	45	120	1864	70	48	3510	95	48	5472
21	48	602	46	0	1864	71	48	3558	96	8	5480
22	24	626	47	96	1960	72	30	3588	97	240	5720
23	48	674	48	24	1984	73	192	3780	98	54	5774
24	8	682	49	108	2092	74	24	3804	99	120	5894
25	84	766	50	30	2122	75	120	3924	100	84	5978

Таблица 3 – Характеристики координационных сфер ОЦК-структур

\mathbb{R}^2	К	С	R^2	К	С	\mathbb{R}^2	К	С	\mathbb{R}^2	К	С
1	8	8	25	56	690	148/3	24	1906	224/3	48	3516
4/3	6	14	76/3	24	714	152/3	72	1978	227/3	120	3536
8/3	12	26	80/3	24	738	155/3	96	2074	76	48	3684
11/3	24	40	83/3	72	810	160/3	24	2098	232/3	24	3708
4	8	48	28	48	858	163/3	24	2122	235/3	48	3756
16/3	6	54	88/3	24	882	164/3	96	2218	236/3	72	3828
19/3	24	78	91/3	48	930	56	48	2266	81	104	3932
20/3	24	102	32	24	954	57	120	2386	244/3	72	4004
8	24	126	33	72	1026	172/3	24	2410	248/3	96	4100
9	32	158	100/3	30	1056	176/3	24	2434	251/3	168	4268
32/3	12	170	104/3	72	1128	179/3	120	2554	256/3	6	4274
35/3	48	218	107/3	72	1200	60	72	2626	259/3	96	4370
12	30	248	36	32	1232	184/3	48	2674	260/3	96	4466
40/3	24	272	115/3	48	1280	187/3	48	2722	88	96	4562
43/3	24	296	116/3	72	1352	64	8	2730	89	48	4610
44/3	24	320	40	48	1400	65	96	2826	268/3	24	4634
16	8	328	41	48	1448	196/3	54	2880	272/3	48	4682
17	48	376	128/3	12	1460	200/3	84	2964	275/3	120	4802
52/3	24	400	131/3	120	1580	203/3	96	3060	92	96	4898
56/3	48	448	44	48	1628	68	48	3108	280/3	48	4946
59/3	72	520	136/3	48	1676	208/3	24	3132	283/3	72	5018
64/3	6	526	139/3	72	1748	211/3	72	3204	96	36	5054
67/3	24	550	140/3	48	1796	212/3	72	3276	97	96	5100
68/3	48	598	48	30	1826	72	96	3372	292/3	48	5148
24	36	634	49	56	1882	73	96	3468	296/3	120	5268

На рисунке 7 приведены диаграммы значений координационных чисел (ось ординат) для различных координационных сфер, номера которых указаны на оси абсцисс (N):

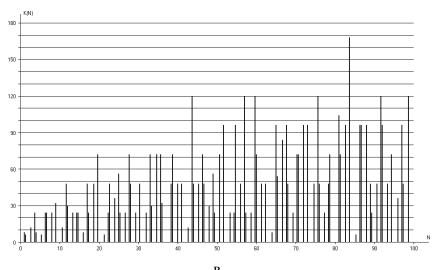
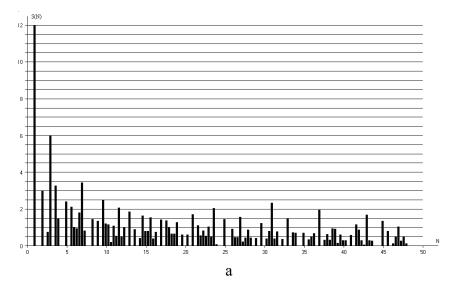
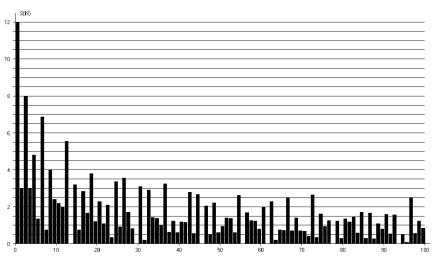
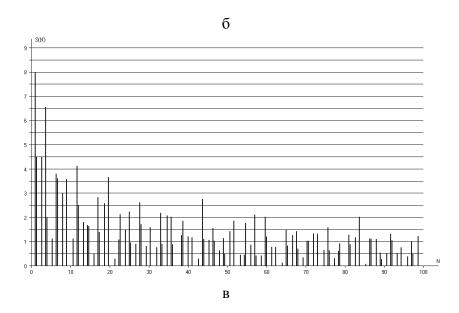


Рисунок 7 — Координационные числа K(N) для координационных сфер


а) ГПУ-, б) ГЦК-, в) ОЦК-структуры


Для иллюстрации относительных значений ретикулярных плотностей на различных координационных сферах в шаровых упаковках ГПУ-, ГЦК-, и ОЦК- типов на рисунке 8 приведены отношения координационных чисел к квадратам радиусов координационных сфер. $S(N) = K(N)/R^2$, где N — номера координационных сфер.


$$S(N) = K(N)/R^2$$

Сравнение характеристик координационных сфер, приведенных в таблицах 1—3 и на диаграммах рисунков 7—8 показывает, что во всех случаях наблюдаются достаточно большие вариации координационных чисел в пределах каждого типа упаковок.

В пределах 100 координационных сфер размеры частиц достаточно малые. Для ГЦК радиус соответствующей координационной сферы равен $R_{100} = 10d$, для ÃЇ Ó $-R_{100} \approx 7d$, для Î ÖÊ $-R_{100} \approx 10d$. Две плотнейшие упаковки ГПУ и ГЦК имеют совершенно различные конфигурации координационных сфер, хотя коэффициенты компактности их достаточно близки и уже в пределах 10 координационных сфер, как и у ОЦК-упаковки, совпадают с объемным значением.

а) ГПУ-, б) ГЦК-, с) ОЦК-структур

Рисунок 8 – Отношения координационных чисел координационных сфер K(N) к квадрату их радиусов (R^2), где N – номер координационной сферы

Из приведенных результатов расчета характеристик координационных сфер следует, что при формировании наночастиц наполнителя при создании композиционных материалов необходимо учитывать, что в зависимости от размера частиц их модифицирующая активность может существенно зависеть от их размера. Это обусловлено различиями ретикулярных плотностей. Чем выше эта величина, тем больше нескомпонированных атомных связей, то есть тем выше поверхностная активность этих частиц. Изменение координационных чисел для частиц в нанодиапазоне окажет влияние и на характер зависимости физических свойств от размера частиц, так как поверхности этих частиц имеют различные атомные координации. Координационные числа ряда сфер совпадают со значениями числа атомов в фуллеренах, то есть габитусы наночастиц могут обладать некристаллографическими точечными симметриями [5]. Различия габитусов плотнейших шаровых упаковок следует учитывать и при создании гетерогенных систем на основе сферических частиц с различными диаметрами [6]. Так как дивергентные потоки в технологических процессах гомогенизации смесей приводят к образованию кластеров из частиц одного размера, то и в этом случае применимо приближение шаровых упаковок.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бокий, Г.Б. Кристаллохимия / Г.Б. Бокий. М. : Hayka, 1971. 400 с.
- 2. Зееман, И. Кристаллохимия / И. Зееман. М.: Мир, 1969. 155 с.
- 3. Авдейчик, С.В. Введение в физику нанокомпозиционных строительных материалов / С.В. Авдейчик [и др.]. Гродно: Изд. ГрГАУ, 2009. 438 с.
- 4. Лиопо, В.А.Габитус наночастиц, полученных при их росте их жидкой или газовых фаз / В.А. Лиопо [и др.]. // Сб. мат. III Республ. науч.-прак. конф. Брест : Изд. БрГУ, 2009.-C.64-68.
- 5. Сабуть, А.В. Классификация и симметрия целочисленных регулярных решеток в многомерных евклидовых пространствах : канд. дис. ... на соискание уч. степени канд. ф.-м. н. / А.В. Сабуть. Гродно, 2003. 192 с.
- 6. Секержицкий, С.С. Математическое моделирование гетерогенных структур наполненных систем: канд. дисс. ... на соискание уч. степени канд. ф.-м. н. / С.С. Секержицкий. Брест, 1995. 189 с.

V.A. Liopo, A.V. Sabutz, S.S. Sekerzhitsky, V.A. Struk. Characteristics of Coordination Spheres of Globular Packing

For the hexagonal closest packing (HCP) and face-centered cubic (FCC) as well as for the body-centered cubic lattice (BCC) are calculated radii of coordination spheres, theirs coordination numbers (CN) and number of atoms in particle, which is coordinated spheres of number N limited. Calculation is for spheres to hundredth number inclusive execute. Diagrams (CN) and reticulated density of coordination spheres are build.