УДК 524.3+539.171

А.И. СЕРЫЙ

О МЕТОДЕ ЛАГРАНЖА ДЛЯ ЭЛЕКТРОННО-ПРОТОННО-НЕЙТРОННОЙ СИСТЕМЫ

Работа является продолжением исследований, начатых в [1, с. 86–90]. Поскольку в электронно-протонно-нейтронной (епр-) системе каждая из подсистем незамкнута, рассмотрение выгодности спиновой поляризации через понижение химического потенциала (ХП) каждой подсистемы не убедительно. В качестве сравнения рассмотрим примеры в Таблице 1.

Tr = 1	n	
таолина т –	Эволюция одних и тех же систем как замкнутых и незамкн	IVTLIX
т иолици т	Sboshodin odinik ii tek me enerem kak samkii yibix ii nesamkii	1 9 1 1 1 1 2 1

	объект (система)	протон	односортный нуклонный газ	
	состояние системы	изолированный	без примесей	
1	можно ли считать систему замкнутой	да		
	стабильность по от- ношению к	распаду с образованием нейтрона	спиновой поляризации с пони- жением ХП	
	имеет ли место	да	вопрос остается открытым	
	если да, то почему	нейтрон тяжелее прото- на		
2	состояние системы	в ядре, т. е. в присутст- вии др. нуклонов	в присутствии газа нуклонов противоположного сорта	
	можно ли считать систему замкнутой	нет		
	стабильность по от- ношению к	распаду с образованием нейтрона	спиновой поляризации с пони- жением ХП	
	имеет ли место	и да, и нет	вопрос остается открытым	
	если нет, то откуда	от окружающих нукло-	от взаимодействия с нуклонами	
	берется энергия	нов	другого сорта	
	и при этом уменьша- ется энергия	всего ядра	всей смеси нуклонных газов	

Поэтому исследовать спиновую поляризацию в епр-системе более надежно через критерий Стонера и метод Лагранжа, суть которого в следующем. Нужно найти минимум функции $w(x_1, x_2, ..., x_n)$ при наложении m < n связей [2, с. 169, 170] (они могут быть и в виде неравенств)

$$\Phi_i(x_1, x_2, ..., x_n) = 0, i = \overline{1, m}.$$
 (1)

Для этого составляется функция Лагранжа

$$L = w + \sum_{k=1}^{m} \lambda_k \Phi_k . (2)$$

Затем решается система, которую можно записать двумя способами:

1)
$$\frac{\partial L}{\partial x_k} = 0, k = \overline{1, n}; \Phi_i = 0, i = \overline{1, m}; 2) \frac{\partial L}{\partial x_k} = 0, k = \overline{1, n}; \frac{\partial L}{\partial \lambda_i} = 0, i = \overline{1, m}.$$
 (3)

Решение соответствует условному локальному минимуму, если d^2L – положительно определенная квадратичная форма n-m переменных.

Для епр-системы с поляризованными по спину нуклонами (поляризацию электронов не рассматриваем) в роли функции w выступает плотность энергии, для которой надо найти минимум при ограничениях:

$$w(n_p, n_n, p_{0p}, p_{0n}) = w_p + w_n + w_{pn} + w_{pp} + w_{nn} + w_e.$$
 (4)

$$n_p \ge 0; n_n \ge 0; 0 \le p_{0p} \le 1; -1 \le p_{0n} \le 1.$$
 (5)

Если в области (5) экстремума нет, задача усложняется. Здесь n_p, n_n – концентрации протонов и нейтронов, p_{0p}, p_{0n} – степени их поляризации.

В роли связей выступают уравнение бета-равновесия и условия равенства XП нуклонов одного сорта с противоположной ориентацией спинов (при полной поляризации будут неравенства). Т. о., число уравнений связи меньше числа переменных, и какая-то величина, например, n_p , может быть свободным параметром. Вид системы уравнений и неравенств для полной и частичной поляризации можно различать по пунктам: А. Число связей (в т. ч. уравнение бета-равновесия). Б. Число неравенств типа (5). В. Число неравенств для XП. Г. Число переменных (вместе со свободными).

Таблица 2 – Различные сочетания для поляризации протонов и нейтронов

$p_{0n} \setminus p_{0p}$	= 1	≠ 1
= - 1	А. 0 + 1. Б. 2. В. 2. Г. 2	А. 1 + 1. Б. 3. В. 1. Г. 3
≠ − 1	А. 1 + 1. Б. 3. В. 1. Г. 3	А. 2 + 1. Б. 4. В. 0. Г. 4

Выражения для составляющих плотности энергии получаем, интегрируя выражения для XП по соответствующим концентрациям (с учетом электронейтральности $n_e=n_p$):

$$\begin{split} w_{p} &= m_{p}c^{2}n_{p} + \frac{3(6\pi^{2})^{2/3}\hbar^{2}}{10m_{p}}(n_{p\uparrow}^{5/3} + n_{p\downarrow}^{5/3}) - \frac{e^{2}}{8\pi^{3}}(6\pi^{2})^{4/3}(n_{p\uparrow}^{4/3} + n_{p\downarrow}^{4/3}), \\ w_{n} &= m_{n}c^{2}n_{n} + \frac{3(6\pi^{2})^{2/3}\hbar^{2}}{10m_{n}}(n_{n\uparrow}^{5/3} + n_{n\downarrow}^{5/3}), w_{ii} = g_{ii}n_{i\uparrow}n_{i\downarrow}, i = n, p, \\ w_{np} &= g_{np}^{\uparrow\uparrow}(n_{p\uparrow}n_{n\uparrow} + n_{p\downarrow}n_{n\downarrow}) + g_{np}^{\uparrow\downarrow}(n_{p\uparrow}n_{n\downarrow} + n_{p\downarrow}n_{n\uparrow}), \\ \frac{\partial w_{e}}{\partial n_{p(\uparrow,\downarrow)}} &= \sqrt{m_{e}^{2}c^{4} + (6\pi^{2})^{2/3}\hbar^{2}c^{2}n_{p(\uparrow,\downarrow)}^{2/3}} - \frac{e^{2}}{\pi}(6\pi^{2})^{1/3}(n_{p(\uparrow,\downarrow)}^{1/3}). \end{split}$$
 (6)

Интегрировать выражение для w_e нет смысла, т. к. оно зависит от 1 переменной, по которой при составлении системы уравнений все равно надо дифференцировать, а производные по другим переменным равны нулю. Выражение для плотности энергии обменного кулоновского взаимодействия взято из [3, с. 202]. При этом связь между степенями поляризации и концентрациями нуклонов с определенной проекцией спина:

$$p_{0i} = (n_{i\uparrow} - n_{i\downarrow})/n_i \Rightarrow n_{i(\uparrow\downarrow)} = n_i (1 \pm p_{0i})/2. \tag{7}$$

Константы межнуклонного контактного взаимодействия:

$$g_{np}^{\uparrow\uparrow} = \frac{2\pi\hbar^2}{m_{np}^*} a_t, g_{np}^{\uparrow\downarrow} = \frac{\pi\hbar^2}{m_{np}^*} (a_t + a_s), g_{ii} = \frac{\pi\hbar^2}{m_{ii}^*} a_i, \quad i = n, p.$$
 (8)

где m_{ij}^* – приведённые массы, a – длины рассеяния. Их значения (в 10^{-13} см [4, с. 20, 30, 31]): $a_s = -23.71$, $a_t = 5.42$, $a_p = a_n = -17.2$ (последнее равенство – следствие компенсации электронным фоном). Из (7) видно, что при полной поляризации некоторые слагаемые в (6) обращаются в ноль.

Теперь рассмотрим уравнения связей. Предварительно запишем выражения для $X\Pi$ (T_{3i} — проекция изоспина):

$$\begin{split} X_{e} &= (m_{e}^{2}c^{4} + (3\pi^{2}\hbar^{3}n_{e}^{-2/3}c^{2})^{1/2} + E_{e(\uparrow,\downarrow)}^{oбm}, \ E_{e\uparrow}^{oбm} = E_{e\downarrow}^{oбm}, \\ X_{i(\uparrow,\downarrow)} &= m_{i}c^{2} + H_{i(\uparrow,\downarrow)} + U_{i(\uparrow,\downarrow)} + E_{p(\uparrow,\downarrow)}^{oбm} (\frac{1}{2} + T_{3i}), i = n, p, \\ E_{i(\uparrow,\downarrow)}^{oбm} &= -\frac{e^{2}(6\pi^{2}n_{i(\uparrow,\downarrow)})^{1/3}}{\pi}, i = e, p, H_{i(\uparrow,\downarrow)} = \frac{(6\pi^{2}\hbar^{3}n_{i(\uparrow,\downarrow)})^{2/3}}{2m_{i}}, i = n, p, \\ U_{i(\uparrow,\downarrow)} &= g_{np}^{\uparrow\uparrow}n_{j(\uparrow,\downarrow)} + g_{np}^{\uparrow\downarrow}n_{j(\downarrow,\uparrow)} + g_{ii}n_{i(\downarrow,\uparrow)}, i, j = n, p \text{ или } p, n. \end{split}$$

При наличии магнитного поля сонаправлены магнитные моменты, поэтому $p_{0n} < 0$. Связи, соответствующие уравнению бета-равновесия, а также 2 уравнениям, получаемым из равенств для XП нуклонов одного сорта с противоположными проекциями спина:

$$\Phi_I = X_{n\uparrow} - X_{n\uparrow} - X_e. \tag{10}$$

$$\Phi_2 = X_{p\downarrow} - X_{p\uparrow}, \Phi_3 = X_{n\downarrow} - X_{n\uparrow}. \tag{11}$$

При полной поляризации протонов или нейтронов соответствующее уравнение (11) становится неравенством с неотрицательной левой частью; (10) остается в силе. Если окажется, что спиновая поляризация вообще несовместима с бета-равновесием, то система (4), (5), (10), (11) не будет иметь решений ни при каком из вариантов в Таблице 2.

Зависимость изменения плотности энергии по отношению к неполяризованному состоянию от степеней протонной и нейтронной поляризации (которая выбирается отрицательной в силу сказанного выше) для $n_p = n_n =$

 $=7.42\cdot10^{30}$ см $^{-3}$ (вблизи порога нейтронизации, что соответствует решению (10) для неполяризованного случая) показана на рисунке 1. Видно, что безусловный экстремум для (4) (для нахождения которого еще не требуется построение функции Лагранжа) отсутствует, а минимальное значение достигается при полной поляризации обоих газов (без учета связей). При других концентрациях качественных изменений нет.

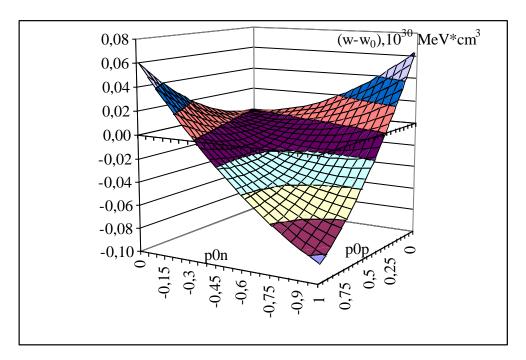


Рисунок 1 – Зависимость плотности энергии от степени поляризации

СПИСОК ЛИТЕРАТУРЫ

- 1 Серый, А.И. О поправках к уравнению бета-равновесия электроннопротонно-нейтронной системы. / А.И. Серый // Актуальные научные проблемы теоретической и экспериментальной физики, астрономии и космонавтики: сб. материалов межвуз. науч. конф., посвященной 50-летию первого полета человека в космос, Брест, 11–12 апреля 2011 г. / Брест. гос. унтимени А.С. Пушкина; под общ. ред. В.С. Секержицкого. Брест: БрГУ, 2011. 114 с. С. 86 90.
- 2 Воднев, В.Т. Основные математические формулы: Справочник / В.Т. Воднев, А.Ф. Наумович, Н.Ф. Наумович; под ред. Ю.С. Богданова 3-е изд., перераб. и доп. // Мн.: Выш. шк., 1995. 380 с.: ил.
- 3 Левитов, Л.С. Функции Грина. Задачи и решения / Л.С. Левитов, А.В. Шитов // М.: Физматлит, 2003. 392 с.
- 4 Ситенко, А.Г. Лекции по теории ядра / А.Г. Ситенко, В.К. Тартаковский // М. : Атомиздат, 1972. 351 с.