УДК 372.853

А. И. СЕРЫЙ

Брест, БрГУ

ОБОБЩЕНИЕ НЕКОТОРЫХ СВЕДЕНИЙ ПО ПИРОЭЛЕКТРИЧЕСТВУ

В учебной программе по дисциплине «Физика» для специальности «Математика и информатика» предусмотрено, в частности, изучение темы «диэлектрики». В силу того, что сроки изучения материала (и подготовки к экзамену) довольно ограничены, представляется полезным использование систематизирующих таблиц для закрепления и обобщения материала.

Рассмотрим примеры таких таблиц (составленных на основе [1, с. 160–169; 2, с. 590]) по основным сведениям, связанным с пироэлектриками и сегнетоэлектриками как частным случаем пироэлектриков.

Таблица 1 – Сравнительная характеристика пироэлектриков

и сегнетоэлектриков

Вещества	Пироэлектрики	Сегнетоэлектрики	
		(ферроэлектрики)	
Примеры	турмалин	сегнетова соль	
Спонтанная	при любых отличных от нуля	в конечном диапазоне	
поляризация	температурах, но связанные	температур	
возможна	заряды со временем компенси-		
	руются свободными		
Зависимость	проявляется в виде прямых	проявляется в наличии сегнето-	
поляризации	первичного, вторичного и тре-	электрических точек Кюри	
от температуры	тичного пироэлектрических эф-		
	фектов (таблица 2)		
Влияние внеш-	в обратном пироэлектрическом	в возможности изменения век-	
него электриче-	эффекте (адиабатическое изме-	тора поляризации (в отличие	
ского поля про-	нение температуры)	от пироэлектриков, не являю-	
является		щихся сегнетоэлектриками)	
Основные	прямой (с 3 разновидностями)	сегнетоэлектрический	
эффекты	и обратный пироэлектрический	гистерезис	
Доменная	отсутствует, если пироэлектрик	есть (со своими особенностями	
структура	не является одновременно сег-	у сегнетоэлектриков и антисег-	
	нетоэлектриком	нетоэлектриков)	
Являются част-	пьезоэлектриков	пироэлектриков	
ным случаем			

Можно выделить следующую иерархическую классификацию (порядок перечисления – от общего к частному): 1) диэлектрики; 2) пьезоэлектрики; 3) пироэлектрики; 4) сегнетоэлектрики.

При этом, однако, стоит отметить, что существуют и сегнетоэлектрики, относящиеся, скорее, к полупроводникам, а не к диэлектрикам [3, с. 477], хотя, как известно, с точки зрения ширины запрещенной зоны различие между полупроводниками и диэлектриками – прежде всего, количественное.

Сравнительная характеристика разновидностей прямого пироэлектрического эффекта (появление зарядов разных знаков на поверхности кристалла при его нагревании) приведена в таблице 2.

Таблица 2 – Разновидности прямого пироэлектрического эффекта

Эффект	Первичный (истинный)	Вторичный	Третичный (ложный)
Нагрев	Равномерным	равномерным	неравномерным (т.е.
кристалла			с градиентом темпера-
должен быть			туры)
Изменение	должно быть исключено,	происходит	происходит, причем
объема	т.е. форма и объем		неоднородно
и формы	должны поддерживаться		
кристалла	постоянными		
По сути это	эффект в чистом виде,	разновидность пьезоэлектричества с той	
	т.к. он не сводится	разницей, что деформация кристалла про-	
	к пьезоэлектричеству	исходит не от механического воздействия	
Примечания	в некоторых кристаллах	обычно проявля-	при недостаточно тща-
	эффект настолько мал,	ется заметнее	тельном опыте может
	что в чистом виде его не	первичного	быть принят за первич-
	удается обнаружить	эффекта	ный или вторичный

Данная статья дополняет публикацию [4, с. 188–189].

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Сивухин, Д. В. Общий курс физики: учеб. пособие для вузов : в 5 т. / Д. В. Сивухин. М. : Наука, 1977. Т. 3 : Электричество. 688 с.
- 2. Физическая энциклопедия : в 5 т. / гл. ред. А. М. Прохоров; редкол.: Д. М. Алексеев [и др]. // М. : Большая рос. энцикл., 1992. Т. 3. Магнито-плазменный Пойнтинга теорема. 672 с.
- 3. Физическая энциклопедия : в 5 т. / гл. ред. А. М. Прохоров; редкол.: Д. М. Алексеев [и др.]. М.: Большая рос. энцикл., 1994. Т. 4: Пойнтин-га–Робертсона Стримеры. 704 с.
- 4. Секержицкий, В. С. О систематизации некоторых сведений по теме «Сегнетоэлектричество» / В. С. Секержицкий, А. И. Серый // Формирование готовности будущего учителя математики к работе с одаренными учащимися : сб. материалов Междунар. науч.-практ. конф., Брест, 10–11 апр. 2018 г. / Брест. гос. ун-т им. А.С. Пушкина; редкол.: Н.А. Каллаур [и др.]; под общ. ред. Е.П. Гринько. Брест : БрГУ, 2018. 265 с. С. 188–189.