УДК 372.853

В. А. ПЛЕТЮХОВ, А. И. СЕРЫЙ Брест, БрГУ

О РАЗЛИЧНЫХ СПОСОБАХ ВЫВОДА ФОРМУЛЫ РЕЛЯТИВИСТСКОГО ЗАМЕДЛЕНИЯ ВРЕМЕНИ

Несмотря на то что в учебной литературе формула, описывающая релятивистский эффект замедления времени, чаще всего выводится как следствие преобразований Лоренца (ПЛ), этот способ не является единственным, поэтому представляется интересным сравнить его с другими, менее известными способами (таблица).

Таблица — Сравнительная характеристика способов вывода формулы релятивистского эффекта замедления времени

1	Способ	1. Через описание мысленного эксперимента, в котором ИСО K' связана с зеркалом, параллельным осям x и x' , а луч света начинает идти к зеркалу в момент совпадения начал координат ИСО K и K'	2. Через ПЛ	3. Через времени- подобный 4-мер- ный интервал $S^2 = c^2 (\Delta t)^2 - (\Delta x)^2$
Этапы вывода		1. Рассматриваем движение луча от начала координат к зеркалу и обратно в ИСО K и K' . 2. По теореме Пифагора получим $(c\Delta t)^2 - (\upsilon\Delta t)^2 = (c\Delta t')^2$. 3. Выполняем нужные преобразования [1, с. 366–367]	1. Записываем формулу для обратных преобразований промежутков времени. 2. Полагаем $\Delta x' = 0$	 Приравниваем S² к c²(∆t′)². Приравниваем ∆х к v∆t . 3. Выполняем нужные преобразования
Используются ли	S^2	Нет	Нет	Да, непосред-
	ПЛ	Нет	Да, непосред- ственно	Косвенно, так как S^2 инвариантен относительно ПЛ
	посту- латы СТО	Да, второй постулат (скорость светового луча одинакова в обеих ИСО)	Косвенно, так как на постулатах СТО	к вывод ПЛ основан ГО

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Мэрион, Дж. Б. Физика и физический мир / Дж. Б. Мэрион. – М. : Мир, 1975.-624 с.