Учреждение образования «Брестский государственный университет имени А.С. Пушкина»

ПРОБЛЕМЫ ОЦЕНКИ, МОНИТОРИНГА И СОХРАНЕНИЯ БИОРАЗНООБРАЗИЯ

Сборник материалов региональной научно-практической экологической конференции

Брест, 3 декабря 2015 года

Брест БрГУ имени А.С. Пушкина 2016 УДК 574.1(476) ББК 28.088(4Беи)я431 П 78

> Рекомендовано редакционно-издательским советом Учреждения образования «Брестский государственный университет имени А.С. Пушкина»

Рецензенты:

декан факультета инженерных систем и экологии УО «Брестский государственный технический университет», доктор географических наук, профессор А.А. Волчек

доцент кафедры географии и природопользования УО «Брестский государственный университет имени А.С. Пушкина», кандидат географических наук, доцент О.И. Грядунова

Редколлегия:

старший преподаватель Ю.В. Бондарь кандидат биологических наук, доцент Н.В. Шкуратова преподаватель М.В. Левковская кандидат биологических наук, доцент Н.М. Матусевич кандидат биологических наук, доцент С.М. Ленивко

П 78 Проблемы оценки, мониторинга и сохранения биоразнообразия: сб. материалов регион. науч.-практ. экол. конф., Брест, 3 дек. 2015 г. / Брест. гос. ун-т им. А. С. Пушкина; редкол.: Ю. В. Бондарь [и др.]. – Брест: БрГУ, 2016. – 300 с.

ISBN 978-985-555-438-8.

В сборнике представлены материалы, посвященные решению актуальных проблем экологии, мониторинга природных и антропогенных экосистем; рационального природопользования и охраны окружающей среды; биоразнообразия и современного состояния флоры и фауны; биоиндикации и биотестирования; агроэкологии; экологического образования и просвещения.

Издание адресуется научным работникам, магистрантам, аспирантам, преподавателям и студентам высших учебных заведений, специалистам системы образования.

Ответственность за языковое оформление и содержание материалов несут их авторы.

УДК 574.1(476) ББК 28.088(4Беи)я431 УДК 576.316.352:504.61

А.Н. ТАРАСЮК

Брест. БрГУ имени А.С. Пушкина

БИОТЕСТИРОВАНИЕ ДЕЙСТВИЯ СОЛЕЙ ТЯЖЁЛЫХ МЕТАЛЛОВ (НИТРАТОВ РТУТИ И СВИНЦА) С ИСПОЛЬЗОВАНИЕМ ЛИЧИНОК КОМАРА ХИРОНОМУСА

В последнее время биологические методы контроля качества среды приобретают всё большую актуальность и выходят на первый план. Это обусловием не только их дешевизной и доступностью, но также возможностью интегральной оценки влияния неблагоприятных факторов. Одним из важнетних направлений контроля состояния окружающей среды является биотестирование процедую установления неблагоприятного влияния факторов среды с помощью биологических тест-объектов.

К числу перспективных объектов биотестирования состояния водной среды можно отнести комара *Chironomus plumosus* (Diptera, Chironomidae). Это массо вый, широко распространённый в Палеарктике вид. личинки которого заселян разнообразные искусственные и естественные водоёмы различной трофности обитают на разных глубинах и легко доступны для сбора. В клетках слонный желез личинок данного вида имеются крупные, удобные для изучения политенные хромосомы.

Для биотестирования негативного действия солей тяжёлых металлов (ртути и свинца) были взяты их растворимые соли — нитраты. Соединения ртути и свинца наиболее токсичны и в больших количествах выбрасываются в окружнющую среду в составе отходов производства предприятий чёрной и цветной металлургии, машиностроения, выхлопов автомобильного транспорта [1]. Генепическая активность указанных соединений изучена недостаточно, хотя именно она является наиболее важным показателем для оценки долговременных последствий загрязнения окружающей среды.

Действие нитратов ргути и свинца оценивалось по образованию политенными хромосомами сильных изгибов и перекручиваний. Такие структурные изменения в свете теории предмутационных состояний рассматриваются как предшественники разрывов хромосом и могут реализовываться в хромосомные мутации [2]. Личинки комара хирономуса помещались в растворы интратов ртути и свинца различных концентраций и выдерживались там в течение трех суток После чего из личинок извлекались слюнные железы и готовились препараты политенных хромосом. Результаты учета частоты встречаемости изгибов и перекручиваний представлены в таблице.

Габлица – Частоты встречаемости изгибов и перекручиваний политенных уромосом личинок хирономуса при действии различных концентраций $\Pi g(NO_3)_2$ и $Pb(NO_3)_2$

Действующее вещество и его концентрация (мг/л)	Частота встречаемости изгибов и перекручиваний (Хср.+ Sx) для хромосомы №			
	I	II	III	IV
Контроль	9,8+4,6	12,2+5,1	7,3+4,1	0
Hg(NO ₃) ₂ 0,005 (ПДК)	43,9+7,8***	34,2+7,4*	19,5+6,2	0
0,05	27,0+7,3	37,8+8,0*	16,2+6,1	0
0,5	53,7+7,8***	56,1+7,8***	29,3+7,1*	0
5	65,0+7,5***	55,0+7,9***	30,0+7,3*	0
50	52,5+7,9***	65,0+7,5***	20,0±6,3	0
Pb(NO ₃) ₂ 0,1(ПДК)	69,8+7,0***	55,8+7,6***	27,9+6,8*	0
1	68,1+6,8***	70,2+6,7***	44,7+7,3***	0
10	81,6+6,3***	79,0+6,6***	44,8+8,1***	0
100	80,0+6,3***	80,0+6,3***	47,5+7,9***	0
1000	84,2+5,9***	76,3+6,9***	36,8+7,8**	0

Примечание — ПДК — предельно допустимая концентрация; *, **, *** — отличия от контроля достоверны при P < 0.05, 0.01, 0.001 соответственно.

Из полученных данных следует, что даже самые незначительные концентрации нитратов ртути и свинца приводят к существенному увеличению частоты изгибов и перекручиваний политенных хромосом, причём в большинстве случаев эффекты достоверны (хромосома IV имеет небольшие размеры, и её изгибы под микроскопом не видны). Это означает, что указанные соединения обладают высокой генетической активностью, а выбранная тест-реакция является информативной.

СПИСОК ЛИТЕРАТУРЫ

- Будников, Г. К. Тяжёлые металлы в экологическом мониторинге водных систем / Г. К. Будников // Сорос. образоват. журп. – 1998. – № 5. – С. 23–29.
 - Дубинин, Н. П. Общая генетика / Н. П. Дубинин. М.: Наука, 1976. 590 с.