Раздел 5. Сетевая технология TOKEN RING

План лекции:

Основные характеристики

Мониторинг системы

Маркерный метод доступа к разделяемой среде

Маркер

Кадр данных (Data Frame)

Прерывающая последовательность (Abort Delimiter Frame)

Принципы передачи данных в сети Token Ring (4 Мбит/с)

Принципы передачи данных в сети Token Ring (16 Мбит/с)

Физический уровень технологии Token Ring

Основные характеристики

Данная сетевая архитектура была разработана и внедрена фирмой IBM еще в 1984 г. как часть предложенного ею способа объединить в сеть весь ряд выпускаемых IBM компьютеров: персональные компьютеры; средние ЭВМ и мейнфреймы. Разрабатывая эту технологию, IBM ставила задачу обеспечить простоту монтажа кабеля – витой пары – соединяющего компьютер с сетью через розетку.

Сети Token Ring, так же как и сети Ethernet, характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).Token Ring является реализацией протокола физического уровня IEEE 802.5:

·         физическая топология – "звезда";

·         логическая топология – "кольцо";

·         узкополосный тип передачи;

·         скорость передачи 4 и 16 Мбит/с;

·         соединение неэкранированной и экранированной витой пары;

·         метод доступа – маркерное кольцо.

Смешение станций, работающих на различных скоростях, в одном кольце не допускается. Сети Token Ring, работающие со скоростью 16 Мбит/с, имеют некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мбит/с.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры – посланный кадр всегда возвращается в станцию-отправитель. В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

Мониторинг системы

Компьютер, который первым начал работу, наделяется системой Token Ring особыми функциями, выполняя роль так называемого активного монитора. Этот компьютер:

·         должен наблюдать за работой всей системы;

·         осуществляет текущий ее контроль;

·         проверяет корректность отправки и получения кадров;

·         отслеживает кадры, проходящие по кольцу более одного раза;

·         гарантирует, что в кольце одновременно находится лишь один маркер.

После появления в сети нового компьютера система инициирует его, чтобы он стал частью кольца. Это включает в себя: проверку уникальности адреса; уведомление всех узлов сети о появлении нового узла. В "теоретической" кольцевой топологии вышедший из строя компьютер останавливает движение маркера, что в свою очередь останавливает работу всей сети. В реальных сетевых архитектурах Token Ring используются интеллектуальные концентраторы, которые в состоянии обнаружить отказавшую сетевую плату (РС) и вовремя отключить ее. Эта процедура позволяет "обойти" отказавший компьютер, поэтому маркер продолжает свое движение. Таким образом, отказавший компьютер не влияет на работу сети.

Если же выходит из строя активный монитор, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

Маркерный метод доступа к разделяемой среде

В Token Ring кадры бывают четырех видов: кадр данных (data frame), маркера (token frame), команды (command frame) и сброса (abort delimiter frame).

6_01.png

Рисунок 1. Формат кадров Token Ring

В сетях с маркерным методом доступа право на доступ к среде передается циклически от станции к станции по логическому кольцу, которое образуется отрезками кабеля, соединяющими соседние станции. Таким образом, каждая станция связана со своей предшествующей и последующей станцией и может непосредственно обмениваться данными только с ними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения – маркер. В сети Token Ring любая станция всегда непосредственно получает данные только от одной станции – той, которая является предыдущей в кольце. Такая станция называется ближайшим активным соседом, расположенным выше по потоку (данных) – Nearest Active Upstream Neighbor, NAUN. Передачу же данных станция всегда осуществляет своему ближайшему соседу вниз по потоку данных.

Маркер

Кадр маркера состоит из трех полей, каждое длиной в один байт (см. рис.1).

SD (Start Delimeter) – поле начального ограничителя появляется в начале маркера, а также в начале любого кадра, проходящего по сети. Поле состоит из уникальной серии электрических импульсов, которые отличаются от тех импульсов, которыми кодируются единицы и нули в байтах данных. Поэтому начальный ограничитель нельзя спутать ни с какой битовой последовательностью.

AC (Access Control) – поле контроля доступа разделяется на четыре элемента данных:

PPP

T

M

RRR

Рисунок 2. Формат поля контроля доступа

 PPP – биты приоритета, T – бит маркера, M – бит монитора, RRR – резервные биты.

Каждый кадр или маркер имеет приоритет, устанавливаемый битами приоритета (значение от 0 до 7, 7 - наивысший приоритет). Станция может воспользоваться маркером, если только она получила маркер с приоритетом, меньшим или равным, чем ее собственный. Сетевой адаптер станции, если ему не удалось захватить маркер, помещает свой приоритет в резервные биты маркера, но только в том случае, если записанный в резервных битах приоритет ниже его собственного. Эта станция будет иметь преимущественный доступ при последующем поступлении к ней маркера.

6_03.png

Рисунок 3. Приоритетный метод захвата маркера

Схема использования приоритетного метода захвата маркера (см. рис.3) состоит в следующем: сначала монитор помещает в поле текущего приоритета P максимальное значение приоритета, а поле резервного приоритета R обнуляется (маркер 7110). Маркер проходит по кольцу, в котором станции имеют текущие приоритеты, например, 3, 6 и 4. Так как эти значения меньше, чем 7, то захватить маркер станции не могут, но они записывают свое значение приоритета в поле резервного приоритета, если их приоритет выше его текущего значения. В результате маркер возвращается к монитору со значением резервного приоритета R = 6. Монитор переписывает это значение в поле P, а значение резервного приоритета обнуляет, и снова отправляет маркер по кольцу. При этом обороте его захватывает станция с приоритетом 6 – наивысшим приоритетом в кольце в данный момент времени.

Бит маркера T имеет значение 0 для маркера и 1 для кадра.

Бит монитора M устанавливается в 1 активным монитором и в 0 любой другой станцией, передающей маркер или кадр. Если активный монитор видит маркер или кадр, содержащий бит монитора в 1, то активный монитор знает, что этот кадр или маркер уже однажды обошел кольцо и не был обработан станциями. Если это кадр, то он удаляется из кольца. Если это маркер, то активный монитор переписывает приоритет из резервных битов полученного маркера в поле приоритета. Поэтому при следующем проходе маркера по кольцу его захватит станция, имеющая наивысший приоритет.

ED (End Delimeter) – поле конечного ограничителя содержит уникальную серию электрических импульсов, которые нельзя спутать с данными. Кроме отметки конца маркера это поле также содержит два подполя: бит промежуточного кадра и бит ошибки. Эти поля относятся больше к кадру данных.

Кадр данных (Data Frame)

Кадр данных состоит из нескольких групп полей (см. рис.1):

·         последовательность начала кадра;

·         адрес получателя;

·         адрес отправителя;

·         данные;

·         последовательность контроля кадра;

·         последовательность конца кадра.

Кадр данных может переносить данные либо для управления кольцом (данные MAC-уровня), либо пользовательские данные (LLC-уровня). Стандарт Token Ring определяет 6 типов управляющих кадров MAC-уровня. Поле "последовательность начала кадра" определяет тип кадра (MAC или LLC) и, если он определен как MAC, то поле также указывает, какой из шести типов кадров представлен данным кадром.

Назначение этих шести типов кадров следующее:

·         Чтобы удостовериться, что ее адрес уникальный, станция посылает кадр "Тест дублирования адреса", когда впервые присоединяется к кольцу.

·         Чтобы сообщить другим станциям, что активный монитор в «работе», он запускает кадр "Активный монитор существует" так часто, как только может.

·         Кадр "Существует резервный монитор" отправляется любой станцией, не являющейся активным монитором.

·         Резервный монитор отправляет "Маркеры заявки", когда подозревает, что активный монитор отказал. Резервные мониторы затем договариваются между собой, какой из них станет новым активным монитором.

·         Станция отправляет кадр "Сигнал" в случае возникновения серьезных сетевых проблем, таких как оборванный кабель, или при обнаружении станции, передающей кадры без ожидания маркера. Определяя, какая станция отправляет кадр сигнала, диагностирующая программа может локализовать проблему.

·         Кадр "Очистка" отправляется после того, как произошла инициализация кольца, и новый активный монитор заявляет о себе.

Каждый кадр (MAC или LLC) начинается с "последовательности начала кадра", которая содержит три поля:

SD (Start Delimeter) – начальный ограничитель, такой же, как и для маркера;

AC (Access Control) – управление доступом, также совпадает для кадров и для маркеров;

FC (Frame Control) – контроль кадра однобайтовое поле, содержащее два подполя – тип кадра и идентификатор управления MAC: 2 бита типа кадра имеют значения 00 для кадров MAC и 01 для кадров LLC. Биты идентификатора управления MAC определяют тип кадра управления кольцом из приведенного выше списка 6-ти управляющих кадров MAC.

DA (Destination Address) – адрес получателя (либо 2, либо 6 байтов). Первый бит (I/G на рис.1) определяет групповой или индивидуальный адрес как для 2-х байтовых, так и для 6-ти байтовых адресов. Второй бит в 6-ти байтовых адресах говорит, назначен адрес локально или глобально.

SA (Source Address) – адрес отправителя имеет тот же размер и формат, что и адрес получателя.

INFO – поле данных кадра, может содержать данные одного из описанных управляющих кадров MAC или запись пользовательских данных, предназначенных для (или получаемых от) протокола более высокого уровня, такого как IP, IPX или NetBIOS. Это поле не имеет определенной максимальной длины, хотя существуют практические ограничения на его размер, основанные на временных требованиях к тому, как долго некоторая станция может управлять кольцом.

FCS (Frame Control Sequence) – последовательность контроля кадра, используется для обнаружения ошибок, состоит из четырех байтов остатка циклически избыточной контрольной суммы, вычисляемой по алгоритму CRC-32, осуществляющему циклическое суммирование по модулю 32.

Последовательность конца кадра состоит из двух полей: ED (End Delimeter) – конечный ограничитель и FS (Frame Status) – статус кадра.

ED (End Delimeter) – конечный ограничитель в кадре данных имеет дополнительное значение по сравнению с маркером. Кроме уникальной последовательности электрических импульсов он содержит два однобитовых поля: бит промежуточного кадра и бит обнаружения ошибки. Бит промежуточного кадра устанавливается в 1, если этот кадр является частью многокадровой передачи, или в 0 для последнего или единственного кадра. Бит обнаружения ошибки первоначально установлен в 0; каждая станция, через которую передается кадр, проверяет его на ошибки (по коду CRC) и устанавливает бит обнаружения ошибки в 1, если она выявлена. Очередная станция, которая видит уже установленный бит обнаружения ошибки, должна просто передать кадр. Исходная станция заметит, что возникла ошибка, и повторит передачу кадра.

FS (Frame Status) – статус кадра имеет длину 1 байт и содержит 4 резервных бита и два подполя: бит распознавания адреса и бит копирования кадра. Так как это поле не сопровождается вычисляемой суммой CRC, то используемые биты дублируются в байте. Когда кадр создается, передающая станция устанавливает бит распознавания адреса в 0; получающая станция устанавливает бит в 1, чтобы сообщить, что она опознала адрес получателя. Бит копирования кадра также вначале установлен в 0, но устанавливается в 1 получающей станцией (станцией назначения), когда она копирует содержимое кадра в собственную память (другими словами, когда она реально получает данные). Данные копируются (и бит устанавливается), если только кадр получен без ошибок. Если кадр возвращается с обоими установленными битами, исходная станция знает, что произошло успешное получение. Если бит распознавания адреса не установлен во время получения кадра, это означает, что станция назначения больше не присутствует в сети (возможно, вследствие неполадок). Возможна другая ситуация, когда адрес получателя опознается, но бит копирования кадра не установлен. Это говорит исходной станции, что кадр был искажен во время передачи (бит обнаружения ошибки в конечном ограничителе также будет установлен). Если оба бита опознавания адреса и копирования кадра установлены, и бит обнаружения ошибки также установлен, то исходная станция знает, что ошибка случилась после того, как этот кадр был корректно получен.

Прерывающая последовательность (Abort Delimiter Frame)

Состоит из двух байтов, содержащих начальный ограничитель (SD) и конечный ограничитель (ED). Прерывающая последовательность может появиться в любом месте потока битов и сигнализирует о том, что текущая передача кадра или маркера отменяется.

Как видно из описания процедур обмена данными, в сети Token Ring на уровнях MAC и LLC применяются процедуры без установления связи, но с подтверждением получения кадров.

Принципы передачи данных в сети Token Ring (4 Мбит/с)

Получив маркер, станция анализирует его и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой. Кадр снабжен адресом назначения и адресом источника. Все станции кольца ретранслируют кадр побитно, как повторители. Если кадр проходит через станцию назначения, то, распознав свой адрес, эта станция копирует кадр в свой внутренний буфер и вставляет в кадр признак подтверждения приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и передает в сеть новый маркер для обеспечения возможности другим станциям сети передавать данные. Такой алгоритм доступа применяется в сетях Token Ring со скоростью работы 4 Мбит/с, описанных в стандарте 802.5.

Время владения разделяемой средой в сети Token Ring ограничивается временем удержания маркера (token holding time), после истечения которого станция обязана прекратить передачу собственных данных (текущий кадр разрешается завершить) и передать маркер далее по кольцу. Станция может успеть передать за время удержания маркера один или несколько кадров в зависимости от размера кадров и величины времени удержания маркера. Обычно время удержания маркера по умолчанию равно 10 мс, а максимальный размер кадра в стандарте 802.5 не определен. Для сетей 4 Мбит/с он обычно равен 4 Кбайт, а для сетей 16 Мбит/с – 16 Кбайт. Это связано с тем, что за время удержания маркера станция должна успеть передать хотя бы один кадр. При скорости 4 Мбит/с за время 10 мс можно передать 5000 байт, а при скорости 16 Мбит/с – соответственно 20 000 байт. Максимальные размеры кадра выбраны с некоторым запасом.

Принципы передачи данных в сети Token Ring (16 Мбит/с)

В сетях Token Ring 16 Мбит/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно, так как по кольцу одновременно продвигаются кадры нескольких станций. Тем не менее свои кадры в каждый момент времени может генерировать только одна станция – та, которая в данный момент владеет маркером доступа. Остальные станции в это время только повторяют чужие кадры, так что принцип разделения кольца во времени сохраняется, ускоряется только процедура передачи владения кольцом.

Для различных видов сообщений, передаваемым кадрам, могут назначаться различные приоритеты: от 0 (низший) до 7 (высший). Решение о приоритете конкретного кадра принимает передающая станция (протокол Token Ring получает этот параметр через межуровневые интерфейсы от протоколов верхнего уровня, например прикладного). Маркер также всегда имеет некоторый уровень текущего приоритета. Станция имеет право захватить переданный ей маркер только в том случае, если приоритет кадра, который она хочет передать, выше (или равен) приоритета маркера. В противном случае станция обязана передать маркер следующей по кольцу станции. Это связано с тем, что приоритеты кадров поддерживаются не во всех технологиях, например в сетях Ethernet они отсутствуют, поэтому приложение будет вести себя по-разному, в зависимости от технологии нижнего уровня, что нежелательно. В современных сетях приоритетность обработки кадров обычно обеспечивается коммутаторами или маршрутизаторами, которые поддерживают их независимо от используемых протоколов канального уровня.

Физический уровень технологии Token Ring

Стандарт Token Ring фирмы IBM изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU (Multistation Access Unit) или MSAU (Multi-Station Access Unit), то есть устройствами многостанционного доступа (рис.4). Сеть Token Ring может включать до 260 узлов.

6_04.png

Рисунок 4. Топология логических и физических связей в сети Token Ring

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет. Такое устройство можно считать простым кроссовым блоком за одним исключением – MSAU обеспечивает обход какого-либо порта, когда присоединенный к этому порту компьютер выключают. Такая функция необходима для обеспечения связности кольца вне зависимости от состояния подключенных компьютеров. Обычно обход порта выполняется за счет релейных схем, которые питаются постоянным током от сетевого адаптера, а при выключении сетевого адаптера нормально замкнутые контакты реле соединяют вход порта с его выходом.

Активный концентратор выполняет функции регенерации сигналов и поэтому иногда называется повторителем, как в стандарте Ethernet.

Возникает вопрос – если концентратор является пассивным устройством, то каким образом обеспечивается качественная передача сигналов на большие расстояния, которые возникают при включении в сеть нескольких сот компьютеров? Ответ состоит в том, что роль усилителя сигналов в этом случае берет на себя каждый сетевой адаптер, а роль ресинхронизирующего блока выполняет сетевой адаптер активного монитора кольца. Каждый сетевой адаптер Token Ring имеет блок повторения, который умеет регенерировать и ресинхронизировать сигналы, однако последнюю функцию выполняет в кольце только блок повторения активного монитора.

Блок ресинхронизации состоит из 30-битного буфера, который принимает манчестерские сигналы с несколько искаженными за время оборота по кольцу интервалами следования. При максимальном количестве станций в кольце (260) вариация задержки циркуляции бита по кольцу может достигать 3-битовых интервалов. Активный монитор «вставляет» свой буфер в кольцо и синхронизирует битовые сигналы, выдавая их на выход с требуемой частотой.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

Все станции в кольце должны работать на одной скорости – либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, – магистральными (trunk cable).

Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля: STP Туре 1, UTP Туре 3, UTP Туре 6, а также волоконно-оптический кабель.

При использовании экранированной витой пары STP Type 1 в кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров, а при использовании неэкранированной витой пары максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров.

Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Туре 1 и 45 м при использовании кабеля UTP Туре 3, Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения во многом связаны со временем оборота маркера по кольцу (но не только – есть и другие соображения, диктующие выбор ограничений). Так, если кольцо состоит из 260 станций, то при времени удержания маркера в 10 мс маркер вернется в активный монитор в худшем случае через 2,6 с, а это время как раз составляет тайм-аут контроля оборота маркера. В принципе, все значения тайм-аутов в сетевых адаптерах узлов сети Token Ring можно настраивать, поэтому можно построить сеть Token Ring с большим количеством станций и с большей длиной кольца.

Существует большое количество аппаратуры для сетей Token Ring, которая улучшает некоторые стандартные характеристики этих сетей: максимальную длину сети, расстояние между концентраторами, надежность (путем использования двойных колец). Однако, попытки развить технологию, внедрив 100 Мбит/с не увенчались коммерческим успехом. В настоящее время технология Token Ring считается устаревшей.