Short communications

EURASIAN MATHEMATICAL JOURNAL ISSN 2077-9879 Volume 3, Number 2 (2012), 129 – 134

ON MAXIMAL SUBGROUP OF A FINITE SOLVABLE GROUP

D.V. Gritsuk, V.S. Monakhov

Communicated by A.S. Dzumadildaev

Key words: finite solvable group, Sylow subgroup, maximal subgroup.

AMS Mathematics Subject Classification: 20D10, 20D20, 20D25.

Abstract. Let H be a non-normal maximal subgroup of a finite solvable group G, and let $q \in \pi(F(H/\operatorname{Core}_{G} H))$. It is proved that G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq H$.

1 Introduction

All groups considered in this paper are finite. All notation and definitions correspond to those in [1, 2].

In 1986, V. A. Vedernikov obtained the following result:

Theorem A. [3, Corollary 2.1] If H is a non-normal maximal subgroup of a solvable group G then $N_G(Q) \subseteq H$ for some Sylow subgroup Q of G.

Here $N_G(Q)$ is the normalizer of Q in G.

In this paper we consider the following problem:

What is a Sylow subgroup such that its normalizer is contained in a non-normal maximal subgroup of a solvable group?

Answering the question we prove the following theorem:

Theorem 1.1. Let H be a non-normal maximal subgroup of a solvable group G, and let $q \in \pi(F(H/\operatorname{Core}_{G} H))$. Then G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq H$.

Here F(X) is the Fitting subgroup of X, $\pi(Y)$ is the set of all prime divisors of |Y|, $\operatorname{Core}_G H = \bigcap_{g \in G} H^g$ is the core of H in G, i.e., is the largest normal subgroup of G contained in H.

Corollary 1.1. Let H be a non-normal maximal subgroup of a solvable group G, and let $q \in \pi(F(H/\operatorname{Core}_G H))$. Then H has a Sylow q-subgroup Q such that $N_G(H_1) \subseteq H$ for each subgroup H_1 of H satisfying $Q \subseteq H_1 \subseteq H$. **Corollary 1.2.** Let H be a non-normal maximal subgroup of a solvable group G, and let $\omega \subset \pi(F(H/\operatorname{Core}_{G} H))$. Then G has a Hall ω -subgroup G_{ω} such that $N_G(G_{\omega}) \subseteq H$.

For non-solvable groups, this result is false. For example, PSL(2, 17) has the order $2^4 \cdot 3^2 \cdot 17$, and the symmetric group S_4 is a maximal subgroup in PSL(2, 17), see [3]. Since $|S_4| = 2^3 \cdot 3$, it follows that S_4 does not contain a Sylow subgroup of PSL(2, 17). Thus it is not possible to extend theorem of V. A. Vedernikov and Theorem 1 to non-solvable groups.

The following question is contained in [3]:

Question. (V. A. Vedernikov, [3]) Is it possible to extend Theorem A to a p-solvable group G containing a maximal subgroup M such that $|G:M| = p^a$, $a \in \mathbb{N}$?

Answering this question we prove the following theorem:

Theorem 1.2. Let G be a p-solvable group. Let M be a non-normal maximal subgroup of G, and let $|G:M| = p^a$, $a \in \mathbb{N}$. Then:

1) if $F(M/\operatorname{Core}_G M) \neq 1$ and $q \in \pi(F(M/\operatorname{Core}_G M))$ then G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq M$;

2) if $F(M/\operatorname{Core}_G M) = 1$ then $N_G(K) \subseteq M$ for some Hall p'-subgroup K of G.

2 Notations and preliminary results

In this section we give some definitions and basic results that will be used in our paper.

Let \mathbb{P} be a set of all prime numbers, and let π be a set of primes, i.e., $\pi \subseteq \mathbb{P}$. In the paper, π' is the set of all primes not contained in π , i.e., $\pi' = \mathbb{P} \setminus \pi$, $\pi(m)$ is the set of all prime divisors of m. If $\pi(m) \subseteq \pi$ then m is called a π -number.

A subgroup H of G is called a π -subgroup, if |H| is a π -number. A subgroup H of G is called a Hall π -subgroup, if |H| is a π -number and |G:H| is a π '-number. As usual, $O_{\pi}(X)$ is the largest normal π -subgroup of X. A group is called π -separable if it has a normal series whose factors are π -groups or π '-groups.

A group G is called π -solvable if it is π -separable and it has a solvable Hall π -subgroup.

Lemma 2.1. [3, Theorem 1] Let G be a π -separable group, and let H be a subgroup of G. If |G:H| is a π -number then $O_{\pi}(H) \subseteq O_{\pi}(G)$.

Lemma 2.2. Let R be a Hall π -subgroup of a π -separable group G, and let N be a normal subgroup of G. Then $N_G(R)N/N = N_{G/N}(RN/N)$.

Proof. For $x \in N_G(R)$ we have:

$$(x^{-1}N)(RN/N)(xN) = R^x N/N = RN/N,$$

i.e., $N_G(R)N/N \leq N_{G/N}(RN/N)$.

Conversely, if $yN \in N_{G/N}(RN/N)$ then $R^yN = RN$. Next R and R^y are Hall subgroups of RN which are conjugate, i.e., $R^y = R^{ak} = R^k$ for some $ak \in RN$, $a \in R, k \in N$. Then $yk^{-1} \in N_G(R)$, whence $y \in N_G(R)N$, i.e., $N_{G/N}(RN/N) \leq N_G(R)N/N$.

Lemma 2.3. Let G be a π -solvable group containing a nilpotent Hall π -subgroup. If H is a maximal subgroup of G and |G:H| is π -number then $O_{\pi}(H)$ is a normal subgroup of G.

Proof. By Lemma 2.1, $O_{\pi}(H) \subseteq O_{\pi}(G)$. If $O_{\pi}(H) = O_{\pi}(G)$ then $O_{\pi}(H)$ is a normal subgroup of G. Let $O_{\pi}(H)$ be a proper subgroup of $O_{\pi}(G)$, and let G_{π} be a Hall π -subgroup of G. Clearly, $O_{\pi}(G)$ is a proper subgroup of G_{π} . Since G_{π} is a nilpotent subgroup we have that $O_{\pi}(H)$ is a proper subgroup of $D = N_{G_{\pi}}(O_{\pi}(H))$. Since $O_{\pi}(H) = H \cap O_{\pi}(G)$ it follows that D is not contained in H, so $N_G(O_{\pi}(H)) \supseteq \langle H, D \rangle =$ G and $O_{\pi}(H)$ is a normal subgroup of G.

3 Main results

Theorem 3.1. Let G be a π -solvable group containing a nilpotent Hall π -subgroup. Let M be a non-normal maximal subgroup of G, and let |G:M| is a π -number. Then:

1) if $F(M/\operatorname{Core}_G M) \neq 1$ and $q \in \pi(F(M/\operatorname{Core}_G M))$ then G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq M$;

2) if $F(M/\operatorname{Core}_G M) = 1$ then $N_G(K) \subseteq M$ for some Hall π' -subgroup K of G.

Proof. Case 1: $\operatorname{Core}_G M = 1$. Since M is a π -solvable group we have that M contains a Hall π' -subgroup K. Thus

$$|G:K| = |G:M||M:K|.$$

Since |G : M| is a π -number we have that K is a Hall π' -subgroup of G. Hence $O_{\pi'}(G) \leq K \leq M$, so $O_{\pi'}(G) \leq \operatorname{Core}_G M = 1$. Since G is a π -solvable group we have that $O_{\pi}(G) \neq 1$. However, G is a primitive group with a maximal subgroup M such that $\operatorname{Core}_G M = 1$. Therefore, for some $p \in \pi(G)$ we have the following:

$$N = O_p(G) = F(G) = C_G(O_p(G)) \neq 1, \ G = M[O_p(G)], \ \Phi(G) = 1,$$

and $O_p(M) = 1$.

Assume that $F(M) \neq 1$, $q \in \pi(F(M))$, and let Q be a Sylow q-subgroup of M. Then $O_q(M) \neq 1$, $O_q(M) \subseteq Q$, and since $\operatorname{Core}_G M = 1$ we have $N_G(O_q(M)) = M$. Since $O_p(M) = 1$, it follows that p does not belong to $\pi(F(M))$ and $p \neq q$. A subgroup $D = N_G(Q) \cap O_p(G)$ is a normal subgroup of $N_G(Q)$, and

$$D \subseteq C_G(Q) \subseteq C_G(O_q(M)) \subseteq N_G(O_q(M)) = M.$$

Next $D = N_G(Q) \cap O_p(G) \subseteq M \cap O_p(G) = 1$. We consider the subgroup $L = N_G(Q)O_p(G)$. Since $N_G(Q) \cap O_p(G) = 1$ we have $L = [O_p(G)]N_G(Q)$. It follows from $G = [O_p(G)]M$ and Dedekind's identity that

$$L = [O_p(G)]N_G(Q) = [O_p(G)](L \cap M), \ L/O_p(G) \simeq N_G(Q) \simeq L \cap M,$$

and $L \cap M$ is a q-closed subgroup. The inclusion $Q \subseteq L \cap M$ implies that Q is a normal subgroup of $L \cap M$. It follows from $|N_G(Q)| = |L \cap M|$ that $L \cap M = N_G(Q)$ and $N_G(Q) \subseteq M$.

Assume that F(M) = 1, and let K be a Hall π' -subgroup of M. By Lemma 2.3, $O_{\pi}(M)$ is a normal subgroup of G. Hence $O_{\pi}(M) \leq \operatorname{Core}_{G}M = 1$. Since G is a π -solvable group we have $O_{\pi'}(M) \neq 1$ and $O_{\pi'}(M) \subseteq K$. Since $\operatorname{Core}_{G}M = 1$ we have $N_{G}(O_{\pi'}(M)) = M$. A subgroup $B = N_{G}(K) \cap O_{p}(G)$ is a normal subgroup of $N_{G}(K)$ and

$$B \subseteq C_G(K) \subseteq C_G(O_{\pi'}(M)) \subseteq N_G(O_{\pi'}(M)) = M.$$

Next $B = N_G(K) \cap O_p(G) \subseteq M \cap O_p(G) = 1$. We consider the subgroup $T = N_G(K)O_p(G)$. Since $N_G(K) \cap O_p(G) = 1$ we have $T = [O_p(G)]N_G(K)$. It follows from $G = [O_p(G)]M$ and Dedekind's identity that

$$T = [O_p(G)]N_G(K) = [O_p(G)](T \cap M), \ T/O_p(G) \simeq N_G(K) \simeq T \cap M,$$

and that $T \cap M$ is a π' -closed subgroup. Since the Hall π' -subgroup K is contained in $T \cap M$, K is a normal subgroup of $T \cap M$ and $T \cap M \subseteq N_G(K)$. It follows from isomorphism $N_G(K) \simeq T \cap M$ that $|N_G(K)| = |T \cap M|$, so $T \cap M = N_G(K)$ and $N_G(K) \subseteq M$.

Thus the theorem in Case 1 is proved.

Case 2: $N = \operatorname{Core}_{G} M \neq 1$. We consider the quotient group $\overline{G} = G/N$. Clearly, \overline{G} is a π -solvable group and $|\overline{G} : \overline{M}| = |G : M|$ is a π -number, where $\overline{M} = M/N$. Since $\operatorname{Core}_{\overline{G}} \overline{M} = 1$, for the group \overline{G} with a non-normal maximal subgroup \overline{M} , we can apply Case 1.

Assume that $F(\overline{M}) \neq 1$, and let $q \in \pi(F(\overline{M}))$. By Case 1, \overline{G} has a Sylow q-subgroup \overline{Q} such that $N_{\overline{G}}(\overline{Q}) \subseteq \overline{M}$. Let $\overline{Q} = A/N$, and let Q be a Sylow q-subgroup of A. Then $QN/N = A/N = \overline{Q}$, and

$$N_{\overline{G}}(\overline{Q}) = N_{G/N}(QN/N) = N_G(Q)N/N.$$

By the condition $N_G(Q)N/N \subseteq \overline{M} = M/N$ it follows that $N_G(Q) \subseteq M$.

Assume that $F(M/\operatorname{Core}_G M) = 1$. By Case 1, $N_{\overline{G}}(\overline{K}) \subseteq \overline{M}$ for some Hall π' -subgroup \overline{K} of \overline{G} . Let $\overline{K} = B/N$, and let R be a Hall π' -subgroup of B. It exists because B is a π -solvable group. Therefore R is a Hall π' -subgroup of G, $RN/N = B/N = \overline{K}$, and by Lemma 2.2,

$$N_G(R)N/N \subseteq N_{G/N}(RN/N) = N_{\overline{G}}(\overline{K}).$$

By induction, $N_G(R)N/N \subseteq \overline{M} = M/N$, so $N_G(R) \subseteq M$. Thus the theorem is proved in Case 2.

Note that Theorem 1.2 follows from Theorem 3.1 if $\pi = \{p\}$. If G is a solvable group then under the assumptions of Theorem 3.1 we have $\pi(F(M/\text{Core}_G M)) \neq \emptyset$. So Theorem 1.1 follows from Theorem 3.1.

Proof of Corollary 1.1. By Theorem 1.1, G has a Sylow q-subgroup Q such that $N_G(Q) \subseteq H$. Let H_1 be any subgroup such that $Q \subseteq H_1 \subseteq H$, and let $T = N_G(H_1)$. By Frattini's argument, we have

$$T = N_T(Q)H_1 \subseteq N_G(Q)H_1 \subseteq H, \ T = N_G(H_1) \subseteq H.$$

In the case in which H_1 is a Hall ω -subgroup of H we obtain Corollary 1.2.

References

- [1] K. Doerk, T. Hawkes, Finite soluble groups. Berlin; New York: de Gruyter. 1992.
- [2] B. Huppert, Endliche Gruppen I. Berlin, Heidelberg, New York. 1967.
- [3] V.A. Vedernikov, On π -properties of a finite groups In the book: Arithmetic and subgroup structure of finite groups. Minsk: Science and technics. 1986, 13–19 (in Russian).

Dmitry Vladimirovich Gritsuk Department of Mathematics, Gomel F. Scorina State University, Gomel 246019, Belarus E-mail: Dmitry.Gritsuk@gmail.com

Victor Stepanovich Monakhov Department of Mathematics, Gomel F. Scorina State University, Gomel 246019, Belarus E-mail: Victor.Monakhov@gmail.com

Received: 04.08.2011