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In this paper, we study solvable groups in which rn(F ) is at most 2. In particular, we
investigated groups of odd order and A4-free groups with this property. Exact estima-
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1. Introduction

All groups considered in this paper will be finite. All notations and definitions
correspond to [4].

The structure of a solvable group depends primarily on its Fitting subgroup.
The following Baer’s result is well-known, see [4, p. 720]:

Let G be a finite solvable group. If

Φ(G) = N0 ⊂ N1 ⊂ · · · ⊂ Nm−1 ⊂ Nm = F (G), (1)

is a normal series such that Ni �G and Ni/Ni−1 has a prime order, i = 1, 2, . . . , m,

then G is supersolvable. Here, Φ(G) is the Frattini subgroup of G, F (G) is the
Fitting subgroup of G.

Recall that a group is bicyclic if it is the product of two cyclic subgroups.
In work [8] notice that the estimation of the derived length depends only on the

Sylow subgroups of the Fitting subgroup. The following assertion was proved:

Let G be a solvable non-primary group and F (G) is its Fitting subgroup. If all
Sylow subgroups of F (G) are bicyclic, then the derived length of G is at most 6.
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Monakhov [5] introduced the concept of the normal rank rn(P ) of p-group P as
follows:

rn(P ) = max
X�P

logp |X/Φ(X)|, (2)

where X runs over all normal subgroups of P including P . The basis theorem
of Burnside [4, III.3.15] implies that the normal rank rn(P ) is the least natural
number k such that every normal subgroup of a p-group P is generated by at most
k elements.

It is obvious that p-group is cyclic, if and only if its normal rank is equal to 1.
The normal rank of bicyclic p-group is at least 3. So in Huppert’s paper [3] there

is the 2-group

G = 〈a, b, c | a2 = b8 = c2 = 1, [a, b] = c, [b, c] = b4, [a, c] = 1〉.
It is bicyclic group of order 25 and rn(G) = 3. From [4, III.11.5] follows, that
the normal rank of bicyclic p-group, p �= 2 is at most 2. However, the converse is
not true. So if S is extraspecial of order 27, then rn(S) = 2, but S is not bicyclic.
Besides, every 2-group of the normal rank ≤ 2 is bicyclic by Lemma 2.4.

The structure of solvable groups with Sylow subgroups of normal rank ≤ 2 was
obtained by Monakhov in [5]. In particular, the following statement was proved:

If G is solvable with Sylow subgroups of normal rank ≤ 2, then the nilpotent
length of G is at most 4.

To simplify the presentation, we introduce the following notation:

rn(F ) = max
p∈π(F )

rn(Fp).

Here F is the Fitting subgroup of G, Fp is a Sylow p-subgroup of F for some
prime p ∈ π(F ). The set of all prime divisors of |F | is denoted π(F ).

In this paper, we study solvable groups in which rn(F ) is at most 2. We proved
the following theorem.

Theorem 1.1. Let G be a solvable group and rn(F ) ≤ 2. Then the nilpotent length
of G is at most 4 and the derived length of G is at most 6. In particular, if :

(1) G is A4-free, then the nilpotent length of G is at most 3 and the derived length
of G is at most 4;

(2) G has odd order, then G is metanilpotent and the derived length of G is at
most 3.

Recall that a group is metanilpotent if it has a nilpotent normal subgroup such
that the quotient group is also a nilpotent group. We say that G is A4-free if there
is no section isomorphic to the alternating group A4 of degree 4.

We write [A]B for a semidirect product with a normal subgroup A.

Example 1.1. Let S be a extraspecial group of order 27. The calculations in the
computer system GAP [2] show that the automorphism group of S is [E32 ]GL(2, 3),
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where E32 is an elementary Abelian group of order 32. The semidirect product
G = [S]GL(2, 3) is a solvable group of order 1296 = 2434 with the Fitting subgroup
F = S and rn(F ) = 2. The nilpotent length of G equals 4, the derived length of
G equals 6. Hence the estimations of the nilpotent length and the derived length,
which are obtained in general case of Theorem 1.1, are exact.

Example 1.2. Let A be a extraspecial group of order 125. The semidirect product
G = [A]S3 is A4-free of order 750 = 53 · 3 · 2 with the Fitting subgroup F = A and
rn(F ) = 2. Here S3 is the symmetric group of degree 3. The nilpotent length of G

equals 3, the derived length of G equals 4. Hence the estimations of the nilpotent
length and the derived length, which are obtained in Theorem 1.1 for A4-free groups,
are exact.

A non-nilpotent group whose proper subgroups are all nilpotent is called a
Schmidt group.

Example 1.3. Fix a prime number p = 5 and q = 3. Since the order of 5 modulo
3 is equal to 2, there is a Schmidt group G = [P ]Q such that P is a non-Abelian
subgroup of order 53, Q is a cyclic subgroup of order 3. In particular, the Fitting
subgroup F = P and rn(F ) = 2. Since P is non-Abelian, Z(P ) = P ′ = Φ(P ). By the
properties of Schmidt groups, we have G′ = P . Thus ((G′)′)′ = (P ′)′ = (Z(P ))′ = 1
and the derived length of G equals 3. Obviously that the nilpotent length of G is
equal to 2. Hence the estimations of the nilpotent length and the derived length,
which are obtained in Theorem 1.1 for groups of odd order, are exact.

2. Preliminary Results

Let F and H be non-empty formations. If G is a group then GF denotes the F-
residual of G, that is the intersection of all those normal subgroups N of G for
which G/N ∈ F. We define F ◦ H = {G |GH ∈ F} and call F ◦ H the formation
product of F and H, see [1, IV, 1.7]. As usually, F2 = F ◦ F and Fn = Fn−1 ◦ F

for every natural n ≥ 3. A formation F is said to be saturated if G/Φ(G) ∈ F

implies that G ∈ F. In this paper, N and A denote the formations of all nilpotent
and all Abelian groups, respectively. The other definitions and terminology about
formations could be referred to [7].

To prove the main theorem, we need the following lemmas.

Lemma 2.1. Let F be a formation. Then N ◦ F is saturated formation.

Proof. By [7, p. 36], the product N ◦ F is local formation. Since the concepts of
“saturated formation” and “local formation” are equivalent, then N◦F is saturated
formation.

In the Huppert’s monograph a description of p-groups G in which every Abelian
normal subgroup generated by no more than two elements was obtained. These
results are shown in Lemmas 2.2 and 2.3.
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Lemma 2.2 ([4, Theorem III.7.6]). Let G be a p-group and every Abelian nor-
mal subgroup be cyclic. Then:

(1) if p > 2, then G is cyclic;
(2) if p = 2, then P has a normal cyclic subgroup of index 2.

Lemma 2.3 ([4, Theorem III.12.4, Remark III.12.5]). Let G be a p-group,
|G| = pn and every Abelian normal subgroup has two generators. Then G is one of
the following groups:

(I) If p ≥ 3, then:

(I1) G is metacyclic;
(I2) either G = A×B, where A is non-Abelian group of order p3 and exponent

p, B is cyclic of order pn−2, or G = [A]B, where A = Zp × Zpn−2 is
Abelian, B is cyclic of order p;

(I3) G = [A]B, where A is Abelian, A = CG(G′), B is cyclic of order p;
(I4) G is a 3-group of maximal class.

(II ) If p = 2, then:

(II 1) G is the quaternion group of order 8;
(II 2) G is a central product of two subgroups Q8 and D8, where D8 is the

dihedral group of order 8;
(II 3) G is a special group such that |G/Z(G)| = 24 and |Z(G)| = 22.

Lemma 2.4. Let P be a p-group and rn(P ) ≤ 2. Then the derived length of P is
at most 2. In particular, if p = 2, then P is bicyclic.

Proof. Since rn(P ) ≤ 2, then every Abelian normal subgroup has no more than
two generators. If every Abelian normal subgroup is cyclic, then by Lemma 2.2, we
have that P is bicyclic and the derived length of P is at most 2. For the case when
the number of generators of each Abelian normal subgroup is equal to 2, we use
Lemma 2.3. Obviously that the groups from (I1), (I3) and (II 1) are metabelian.
Since non-Abelian group A of order p3 and exponent p is metabelian, it follows that
P from (I2) is metabelian. From (I4) the derived length of 3-group of maximal class
equals 2 by [4, III.14.17]. The order of group P from (II 2) is equal to 16 and the
number of P in the library SmallGroups [2] is 8. Moreover, this group is bicyclic
and has the derived length equal to 2. The calculations in the computer system
GAP show that the group from (II 3) has the normal rank equal to 4. Therefore, it
is excluded from consideration.

Thus, the derived length of P is at most 2. Moreover, if p = 2, then P is bicyclic.

Lemma 2.5 ([6, Lemma 12]). Let H be an irreducible solvable subgroup of
GL(2, p). Then H ∈ N3 ∩ A4.

Lemma 2.6 ([6, Lemma 13]). If H is a solvable A4-free subgroup of GL(2, p),
then H is metabelian.
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Lemma 2.7 ([4, Lemma VI.8.1]). Let H be an irreducible subgroup of GL(2, p)
and H has odd order. Then H is cyclic.

3. Proof of Theorem 1.1

(1) We first show that G ∈ F = N4 ∩ N ◦ A4. Apply induction on |G|. Assume
that Φ(G) �= 1. Hence F (G/Φ(G)) = F (G)/Φ(G). Let Fp be a Sylow p-subgroup
of F = F (G). Then FpΦ(G)/Φ(G) is a Sylow p-subgroup in F (G/Φ(G)). Since
FpΦ(G)/Φ(G) ∼= Fp/Fp ∩ Φ(G), it follows that rn(FpΦ(G)/Φ(G)) ≤ rn(Fp) ≤ 2
and rn(F (G/Φ(G))) ≤ rn(F ) ≤ 2. Hence G/Φ(G) satisfies the hypothesis of the
theorem. Since F is a saturated formation, G ∈ F. Next we assume that Φ(G) = 1.

By [4, III.4.5], F is the direct product of minimal normal subgroups Ni of
G, where 1 ≤ i ≤ k. By [4, I.4.5], for any Ni the quotient group G/CG(Ni) is
isomorphic to an irreducible subgroup of Aut(Ni). By [4, I.9.6], the quotient group
G/

⋂k
i=1CG(Ni) is isomorphic to a subgroup of the direct product of G/CG(Ni),

1 ≤ i ≤ k. Since the Fitting subgroup of any solvable group G with Φ(G) = 1
contains its centralizer, it follows that

k⋂
i=1

CG(Ni) = CG(F ) = F and G

/
k⋂

i=1

CG(Ni) = G/F.

Since Ni is an elementary Abelian pi-subgroup of order pk
i , it follows that Ni ≤

Fpi and k ≤ 2, seeing Φ(Ni) = 1 and rn(P ) ≤ 2 for any Sylow subgroup P from
F (G). Therefore, the following options are possible:

(1) Aut(Ni) is isomorphic to cyclic group of order pi − 1;
(2) Aut(Ni) isomorphic to GL(2, pi);
In the first case, G/CG(Ni) is cyclic. Hence G/CG(Ni) ∈ A ⊆ N3 ∩ A4.
In the second case, G/CG(Ni) is an irreducible subgroup of GL(2, pi) and

G/CG(Ni) ∈ N3 ∩ A4 by Lemma 2.5. Since N3 ∩ A4 is a formation, it follows
that G/F ∈ N3 ∩ A4. Hence G ∈ F.

From all the above, we proved that G/F ∈ A4. By Lemma 2.4, F ∈ A2. Therefore,
the derived length of G is at most 6. Since G ∈ N4, it follows that the nilpotent
length of G is at most 4.

Let G be an A4-free. Repeating the proof of the main part of theorem and using
Lemma 2.6, we obtained that G/F ∈ A2. Then G ∈ N3 and the nilpotent length of
G is at most 3. Since F ∈ A2, the derived length of G is at most 4 by Lemma 2.4.

Let G has odd order. By Lemma 2.7, G/F ∈ A. Then G ∈ N2 and the nilpotent
length of G is at most 2 and the derived length of G is at most 3 by Lemma 2.4.

The theorem is proved.
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