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Abstract
Ceramic BiFe1−xZnxO3 multiferroic samples were prepared by the solid combustion method for x = 0.1, 0.15, and
0.2. Structural, magnetic, and magnetocaloric properties of the multiferroics have been studied. For all samples, an
antiferromagnetic phase transition is observed in the region of 630 K. With increase in x, the reduction in magnitude of
magnetization and Neel temperature is observed. The magnetocaloric properties, entropy, relative cooling power, and heat
capacity have been calculated within the framework of thermodynamic theory. It has been established that the maximum
changes of magnetocaloric properties of multiferroics are observed in the region of magnetic phase transition.

Keywords Multiferroics · Phase transitions · Magnetocaloric effect · Entropy · Relative cooling power · Heat capacity

1 Introduction

Multiferroics are the most promising materials, in which
two or more types of ferroic ordering phenomena such as
ferromagnetism, ferroelectricity, and ferroelasticity coexist
[1, 2]. Consequently, in these multifunctional materials can
exist all three types of caloric effects. In [3], the observed
couple caloric effects in multiferroics were proposed to
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be called as multicaloric. The first experimental results
on multicaloric effects and their theoretical analysis were
presented in the following works [4–11]. Nevertheless, in
spite of the intensive studies of the multiferroics, the caloric
effects in them are still poorly studied. This is due to
the fact that a lot of the studied multiferroics have high
phase transition temperatures and low magnitude of the
effects, as well as they are complex objects for measuring
the caloric properties in the high-temperature region due
to a high error of experiment. In this connection, the use
of theoretical approaches for calculation and estimation
of caloric effects in the region of high-temperature phase
transitions is a topical direction in both an applied aspect
to search promising materials for solid-state refrigerators
and a fundamental aspect to understand better the nature
of interactions of the structure, magnetic, and electrical
subsystems.

BiFeO3 compounds are the best-known and well-studied
multiferroics with high temperatures of phase transitions
TN ∼ 643 K and TC ∼ 1083 K [12, 13]. However, existing
data on the caloric effects in compounds based on bismuth
ferrite are almost absent in the literature and limited by the
studies on the electrocaloric effect in them [14, 15]. Thus,
the problem of investigation of the magnetocaloric effect in
compounds based on bismuth ferrite is topical. Particular
interest presents the choice of ceramic BiFeO3 compounds
at substitution Fe ions for divalent Zn ones.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10948-018-4590-2&domain=pdf
http://orcid.org/0000-0001-5311-2063
mailto:amiroff_a@mail.ru
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2 Experiment

Ceramic BiFe1−xZnxO3 (BFZO) samples (x = 0.1, 0.15
and 0.2) were prepared by using solution combustion
method (SCM) [16] from the precursors Bi(NO3)3 ·
5H2O (CDH, India), Fe(NO3)3 · 9H2O (Fischer Scientific),
and Zn(NO3)26H2O (CDH, India), which were used as
oxidizers, whereas glycine (NH2CH2COOH) (CDH, India)
was used as a fuel. The ratios of the oxidizer and the
fuel were calculated taking into account the valences of
metal nitrate oxidants and glycine reducing agent, which
were completely dissolved in the stoichiometric ratio. Then
the mixture was heated up to the evaporation of free
water and the occurrence of spontaneous combustion. The
resulting BiFeO3 powders with a different concentration
of Zn were grinded and calcined at 650 ◦C for 4 h. In
these calcined powders, 2% polyvinyl alcohol was added
as a binder and pellets from synthesized powders were
prepared using uniaxial pressing. Lastly, the ceramics are
sintered at selected temperatures depending on the Zn
concentration as 675 ◦C (x = 0.1), 680 ◦C (x = 0.15),
and 685 ◦C (x = 0.2) for 30 min. The choosing of
different sintering temperatures for all samples related
with the strong dependence of sintering temperature from
the content of impurity phases. Given this fact, each
composition was chosen optimal regimes of sintering in
which the formation of impurity phases is minimal. The
structure of the obtained samples was studied by X-
ray diffraction (XRD) method using Bruker D2 PHASER
and Philips X-pert PRO diffractometers with CuKα1
radiation. The morphology of the ceramic surface was
examined by LEO-1450 scanning electron microscope with
ISYS microprobe analyzer of EDX system (Leica Micro-
systems Wetzlar Gmbh, Germany). The Mossbauer spectra
were measured by the specially designed MC1104Em
spectrometer with a 57Co gamma-ray source in a Cr matrix.
Magnetic measurements were carried out at vibrating
sample magnetometer (LakeShore 7400).

3 Results and Discussion

The surface morphology of the samples exhibits that
ceramic consists of large grains (∼ 1 μm) which are sur-
rounded by grains with small size (∼ 200 nm) (Fig. 1a).
The XRD results demonstrated that the Zn-doped BiFeO3

samples have rhombohedral perovskite structure and indi-
cated the presence of the additional impurity phase
Bi12(Bi0.5Fe0.5)O19.5 [16]. The Mossbauer spectrum also
confirms the presence of the impurity phases. For exam-
ple, the Mossbauer spectra of BiFe0.85Zn0.15O3 (Fig. 1b) are
a superposition of two Zeeman sextets and two paramag-
netic doublets. Doublets correspond to the iron-containing

Fig. 1 Microphotographs of surface on a scanning electron micro-
scope (SEM) for the BiFe0.85Zn0.15O3 sample before heating (a) and
after heating (b)

impurity phases, which often appear during the synthesis
of BiFeO3 (Fig. 2a) [17]. Sextets exhibit the same isomer
shift corresponding Fe3+ in the octahedral environment,
which is a typical perovskite structure, and the presence
of two sextets is connected with spin cycloid structure
[18].

High-temperature annealing of ceramics up to 900 K
leads to the formation of recrystallization of ceramics
(Fig. 1b), structural inhomogeneities, and the appearance
of additional iron-containing impurity phases. All impu-
rity phases were not identified; however, XRD spectra
were detected reflexes characteristic for most commonly
observed in bismuth ferrite impurity phase of iron-rich
Bi2Fe4O9 mullite (Fig. 3). The fraction of impurities arising
after high-temperature annealing was not estimated.

Temperature dependences of magnetization of the
BiFe1−xZnxO3 samples (x = 0.1, 0.15, and 0.2) in
a magnetic field of 0.6 T are shown in Fig. 4. For
all the studied samples in the region of 630 K is
observed an anomaly, which corresponds to the temperature
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a

b

Fig. 2 Mossbauer spectra, measured for (a) BiFeO3 and (b)
BiFe0.85Zn0.15O3 samples at room temperature T = 300 K

of antiferromagnetic transition. The observed nonzero
magnetization above the antiferromagnetic transition is
due to the presence of impurity magnetic phase in the
samples. It should be noted that the presence of impurities
and structural defects is one of the problems in the
studying ceramic samples based on BiFeO3, and their
physical properties may depend on the fraction of impurity
phase, density, and sintering conditions [19]. Moreover,
the high temperatures also influence the initial physical
parameters of the ceramics. In our case, the heating up
to 900 K and cooling of the ceramics lead to irreversible

Fig. 3 XRD pattern of the BiFe0.85Zn0.15O3 samples after annealing;
*the peaks corresponded to the presence of the impurity phase iron
rich Bi2Fe4O9 mullite

a

b

c

Fig. 4 Temperature dependences of magnetization for the
BiFe1−xZnxO3 samples (x = 0.1 (a), x = 0.15 (b), x = 0.2 (c)) in
a magnetic field of 0.6 T (points are experiment and dashed line is
result of calculations)

structural changes associated with the recrystallization of
the material and possible formation of a new magnetic
phase (Fig. 1b). In particular, for a sample with x = 0.15,
X-ray diffraction analysis of the structure the formation
of iron-containing impurity magnetic phase due to heat
treatment (Fig. 3) was confirmed. Thus, using the results
of structural and magnetic investigations, it was shown
that the study of magnetic and magnetocaloric properties
in the high-temperature region has difficulties due to an
instability of the structural and magnetic parameters. Taking
into account this problem, we have proposed to describe
the magnetocaloric properties in the region of magnetic
transition in terms of numerical calculations, which were
successfully realized in the following works [20–22].
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Table 1 Parameters of model for the BiFe1−xZnxO3 ceramic samples in a magnetic field of 6 T

x Mi (emu/g) Mf (emu/g) TN (K) B (10−6 emu/g*K) SN (10−4 emu/g*K)

0.10 0.0814 0.0745 631 − 3.03 − 9.29

0.15 0.1026 0.093 629 − 7.82 − 9.18

0.20 0.0715 0.0639 629 − 3.55 − 9.06

As known, within the framework of thermodynamic
theory, the change in magnetic entropy under the influence
of an external magnetic field from 0 to Hmax is described by
the expression:

�SM =
∫ Hmax

0

(
∂S

∂H

)
T

dH . (1)

Using the Maxwell relation:(
∂M

∂T

)
H

=
(

∂S

∂H

)
T

, (2)

Formulae (1) can be written in the form:

�SM =
∫ Hmax

0

(
∂M

∂T

)
H

dH . (3)

The calculation of the temperature dependences of magneti-
zation and magnetic entropy of the BiFe1−xZnxO3 multifer-
roics was performed by using the phenomenological model
which was described and tested in the following works [20,
22]. According to [20], the temperature dependence of mag-
netization in the vicinity of Neel point can be described by
the following expression:

M = Mi − Mf

2
tanh[A(TN − T )] + BT + C, (4)

where Mi and Mf are the start and end points of the
temperature range of antiferromagnetic transition which
were chosen so that the magnitude of deviation between the
theoretical calculations and the experimental data did not
exceed the error of the experiment. The value of A is defined
as:

A = 2(B − SN)

Mi − Mf
, where B =

(
dM

dT

)
Ti

, (5)

SN =
(

dM

dT

)
TN

, (6)

C = Mi + Mf

2
− BTN. (7)

The temperature dependences of the experimental and
calculated values of magnetization for the investigated
samples are shown in Fig. 4, which are in good agreement
with each other. The calculated parameters of the model
for the BFZO samples in a magnetic field of 6 T are listed
in Table 1. The magnetic contribution to the �SM entropy

varies depending on the value of the external field, which
changes from 0 to Hmax:

�SM =
{
−A

(
Mi − Mf

2

)
sech2 [A(TN − T )] + B

}
Hmax.

(8)

The calculated values of �SM as a function of temper-
ature (Fig. 5) were obtained from the initial experimental
parameters of magnetization. For compositions with x=0.15
and x=0.2, a similar behavior of �SM is observed, which
is related to the close temperatures of antiferromagnetic
transition. The maximum value of the �SM contribution is
reached at T = TN and defined as:

�Smax =
{
−A

(
Mi − Mf

2

)
+ B

}
Hmax. (9)

The full width at half maximum of the peak δTFWHM is
determined from the expression:

δTFWHM = 2

A
sech

[√
2A(Mi − Mf)

A(Mi − Mf) + 2B

]
. (10)

The evaluation of magnetic cooling efficiency, taking into
account a magnitude of the change in the magnetic entropy
and its width at half height, was estimated from the values
of the relative cooling power (RCP) [23]:

RCP = −�SM(T , Hmax) × δTFWHM. (11)

Fig. 5 Calculated values of �SM entropy as a function of temperature,
obtained from the initial experimental parameters of magnetization of
the BiFe1−xZnxO3 ceramics
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Fig. 6 Temperature dependences of calculated values of the relative
change in magnetic part of heat capacity for the BiFe1−xZnxO3
ceramic samples in a magnetic field of 6 T

The change in the magnetic part of specific heat capacity
was calculated by using the following expression [24]:

�Cp,H = −2T A2
(

Mi − Mf

2

)
sech2[A(TN − T )]

× tanh[A(TN − T )]Hmax. (12)

The temperature dependences of calculated values of the
change in the magnetic part of heat capacity and RCP are
shown in Figs. 6 and 7. The values of RCP are expected to
be small as it follows from the data on magnetization and
entropy changes. The magnetic heat capacity demonstrates
typical behavior for magnetic materials. All data were
obtained at Hmax = 6.0 T.

The concentration dependences of the main magnetic
characteristics are listed in Table 2. The evaluation of their
absolute values in an external magnetic field Hmax =
6 T indicates that these materials are hardly suitable for
practical use. It should be noted that the certain correlations
in behavior of these values, depending on the degree of
substitution, are established. On the average, neglecting the
insignificant deviations of values from nonmonotonicity,

Fig. 7 Temperature dependences of calculated values of the relative
cooling power (RCP) for the BiFe1−xZnxO3 ceramic samples in a
magnetic field of 6 T

Table 2 Calculated values of magnetocaloric characteristics for the
BiFe1−xZnxO3 ceramic samples in a magnetic field of 6 T

x −�Smax δTFWHW �Cp,H(max) RCPmax

(J/kg*K) (K) (J/kg*K) (J/kg)

0.10 0.006 4.90 0.27 0.027

0.15 0.006 6.92 0.27 0.038

0.20 0.005 5.65 0.40 0.022

with increase in x, the Neel temperature decreases and
the values of δTFWHM and RCP increase passing through
the relative maxima at x = 0.15. The magnetic transition
occurs in narrow temperature ranges. With the increase
in the degree of bismuth substitution, the temperature,
corresponding to the maximum values of the calculated
characteristics, monotonically decreases. The variation of
temperature values, corresponding to the maximum values
of RCP and �Smax, is in the range from 630.5 K (x =
0.10) to 628.6 K (x = 0.20). This range for the �Cp,H

contribution varies from 630.7 to 629.1 K. The values of the
�Smax and �Cp,H contributions almost do not depend on
the concentration of zinc cations.

With the increase in the content of Zn2+ cations, the
average effective radius of cation in the B sublattice
decreases. The decrease in Neel temperature with increase
in the concentration of zinc cations can be explained by
the fact that the values of Fe–O–Zn angles also change,
and consequently, the degree of distortion of the crystal
lattice increases, which leads to a change in the conditions
and intensity of the indirect (through oxygen anions)
magnetic interaction of iron cations of the Dzyaloshinsky-
Moriya type. At the same time, since the magnetoactive
cations of iron are replaced by diamagnetic cations of
zinc, the absolute magnitudes of the specific magnetizations
decrease. The monotonic decrease in the values of Neel
temperatures can be related to the decrease in the valence
bond angles of Fe–O–Fe.

4 Conclusions

On the basis of obtained experimental results of magnetic
measurements, the study of magnetocaloric properties of
multiferroic BFZO ceramics was carried out. For prediction
of MCE around the antiferromagnetic phase transition
temperature, the theoretical model was applied. Results of
the investigation confirmed the presence of the maximum
of magnetocaloric effect in the vicinity of antiferromagnetic
Neel temperature. Maximum value of MCE was obtained
for sample with concentration x = 0.15 and related with
higher values of magnetization in comparison with another
compositions. The concentration dependences of maximum
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magnitudes of the entropy, relative cooling power, and
magnetic contributions to heat capacity of the samples
indicate that the practical use of magnetocaloric effect in
BFZO at the temperatures above room temperature is hardly
suitable. The obtained results can be used for prediction and
modeling of MCE in multiferroic materials.
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