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Finite groups with subnormal non-cyclic subgroups
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Abstract. In this paper we consider finite groups G such that every non-cyclic maximal
subgroup in its Sylow subgroups is subnormal in G. In particular, we prove that such
solvable groups have an ordered Sylow tower.

1 Introduction

All groups considered in this paper will be finite. Our notation is standard and
taken mainly from [7].

We say that G has a Sylow tower if there exists a normal series with each factor
isomorphic to a Sylow subgroup of G.

Let G be a group of order pa1

1 p
a2

2 : : : p
ak

k
, where p1 > p2 > � � � > pk . We say

that G has an ordered Sylow tower of supersolvable type if there exists a series

1 D G0 � G1 � G2 � � � � � Gk�1 � Gk D G

of normal subgroups of G such that Gi=Gi�1 is isomorphic to a Sylow pi -sub-
group of G for each i D 1; 2; : : : ; k.

Recall that a supersolvable group is a group which has a normal series with
cyclic factors. If G is supersolvable, then G has an ordered Sylow tower of super-
solvable type; see [7, VI.9.1]. The alternating group A4 of degree 4 has a Sylow
tower of non-supersolvable type.

By the Zassenhaus Theorem [7, IV.2.11], a group G with cyclic Sylow sub-
groups has a normal cyclic Hall subgroup such that the corresponding quotient
group is also cyclic. Hence G is supersolvable.

In 1980 Srinivasan [9, Theorem 1] proved that if all maximal subgroups of the
Sylow subgroups of G are normal in G, then G is supersolvable.

If the condition of normality is weakened to subnormality, then the group can be
non-supersolvable. An example is the alternating group A4 of degree 4. However,
Srinivasan [9, Theorem 3] has proved that G has an ordered Sylow tower if all
maximal subgroups of its Sylow subgroups are subnormal in G. The paper [9]
found an echo in many papers; see [1–4].

Developing this theme we prove the following theorem.
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Theorem 1.1. Let G be a group. Assume that for all Sylow subgroups P of G and
for all maximal subgroups M of P , if M is not cyclic, then M is subnormal in G.
Then S.G/ has a Sylow tower and, if G is non-solvable, then

G=S.G/ ' PSL.2; p/;

p is prime, p � ˙3 .mod 8/.

Here S.G/ is a largest normal solvable subgroup of G.

2 Auxiliary results

Let G be a group and �.G/ be the set of primes dividing the order of G. Let p be
a prime andG be a p-group. We also use the notation�1.G/ D hg 2G j g

p D 1i.
The center, the derived subgroup, the Frattini subgroup and the Fitting subgroup
of G are denoted by Z.G/, G0, ˆ.G/ and F.G/, respectively. By Op.G/ and
O.G/ we denote the greatest normal p-subgroup of G and the greatest normal
subgroup of odd order of G, respectively. The notation G D ŒA�B is used for
a semidirect product with a normal subgroup A.

Lemma 2.1. Let P be a non-cyclic p-group and assume that all the proper
subgroups of P are cyclic. Then P is either elementary abelian of order p2 or
a quaternion group of order 8.

Proof. Let x 2 Z.P / have order p. If there is a subgroup hyi of order p, different
from hxi, then hxihyi D hxi�hyi is non-cyclic of order p2 and so P D hxi�hyi
is elementary abelian. If P has a unique subgroup of order p, then, by [7, III.8.2],
P is a quaternion group of order 2n, n � 3. Since all the subgroups ofP are cyclic,
it follows from [7, III.7.12] that P has the order 8.

Lemma 2.2 ([5, Theorem 1.2]). Let G be a non-abelian p-group of order pnC1

with cyclic subgroup A D hai of index p. Then G is isomorphic to one of the
following groups:

(1) MpnC1 D ha; b j apn

D bp D 1; ab D a1Cpn�1

i, where n � 3 if p D 2. In
that case, jG0j D p, Z.G/ D ˆ.G/, j�1.G/j D p

2.

(2) p D 2 and D2nC1 D ha; b j a2n

D b2 D 1; bab D a�1i, the dihedral group.
All elements in Gnhai are involutions.

(3) p D 2 and Q2nC1 D ha; b j a2n

D 1; b2 D a2n�1

; ab D a�1i, the general-
ized quaternion group. The group G contains exactly one involution, all
elements in Gnhai have order 4 and, if n > 2, G=Z.G/ is dihedral.
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(4) p D 2 and SD2nC1 D ha; b j a2n

D b2 D 1; bab D a�1C2n�1

i, n > 2, the
semidihedral group. We have �1.G/ D ha

2; bi ' D2n , ha2; abi ' Q2n so
the maximal subgroups of G are characteristic in G, G=Z.G/ is dihedral.

In cases (2)–(4), we have jG W G0j D 4, jZ.G/j D 2.

For the remainder of this paper, we use the notation MpnC1 , D2nC1 , Q2nC1

and SD2nC1 for the groups listed in Lemma 2.2. By Epn we denote an elementary
abelian group of order pn.

Lemma 2.3. Let P be a p-group and assume that P contains exactly one non-
cyclic maximal subgroup. Then either P D hai � hbi with jaj > p and jbj D p,
or P 'MpnC1 , where n � 2 if p > 2, and n � 3 if p D 2.

Proof. Assume that jP j D pnC1 and that H is a non-cyclic maximal subgroup
of P . Since P is not cyclic, there exists a maximal subgroup A of P with A ¤ H .
By hypothesis, A is cyclic. Let A D hai and b 2 P n A. Then P D haihbi and
jP=ˆ.P /j D p2; see [7, III.3.15]. Hence P has 1C p maximal subgroups.

If P is abelian, then P D hai � hbi for some b 2 P n A and jaj > p as n � 2.
Now P has the following subgroups: p cyclic maximal subgroups hai, habi,
ha2bi; : : : ; hap�1bi and one non-cyclic H D hapi � hbi.

Let P be non-abelian and p > 2 . By Lemma 2.2, P is isomorphic to MpnC1 ,
and so contains one non-cyclic maximal subgroup H D Œhapi�hbi, and p cyclic
subgroups of index p; see [7, III.8.7]. Hence MpnC1 satisfies the requirements of
the lemma if p > 2.

Let P be non-abelian and p D 2. By Lemma 2.2, there are four non-abelian
2-groups with cyclic maximal subgroup: M2nC1 , D2nC1 , Q2nC1 and SD2nC1 .

The groupM2nC1 contains two cyclic maximal subgroups hai and habi, and one
non-cyclic H D Œha2i�hbi. Hence M2nC1 satisfies the condition of the lemma.

The group D2nC1 contains two non-cyclic maximal subgroups Œha2i�hbi and
Œha2i�habi, hence D2nC1 does not satisfy the condition of the lemma.

All three maximal subgroups of Q8 are cyclic. The group Q2nC1 contains
two non-cyclic maximal subgroups ha2ihbi and ha2ihabi if n � 3. Hence Q8

and Q2nC1 , n � 3, does not satisfy the condition of the lemma.
The group SD2nC1 contains two non-cyclic maximal subgroups D2n and Q2n

and one cyclic maximal subgroup. Hence SD2n does not satisfy the condition of
the lemma. The lemma is proved.

A group is called p-closed if it has a normal Sylow p-subgroup. A group is
called p-nilpotent if it has a normal p-complement.

Lemma 2.4. Let p be the smallest prime dividing the order of G and let P be a
Sylow p-subgroup of G. Suppose that every non-cyclic maximal subgroup of P is
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subnormal in G. If G is not p-closed and is not p-nilpotent, then p D 2, 3 divides
the order of G, and P is either the elementary abelian group of order 4 or the
quaternion group of order 8.

Proof. Note that for p > 2 the order of G is odd and coprime with p2 � 1.
Indeed, if q divides jGj and q divides p2 � 1 D .p � 1/.p C 1/, then q > p and
q divides p C 1. But this is possible only when p D 2 and q D 3; this is a contra-
diction.

If P is cyclic, then G is p-nilpotent by [7, IV.2.8].
If P has two non-cyclic maximal subgroups P1 and P2, then, by the hypothesis

of the lemma, P1 and P2 are subnormal in G, hence P D P1P2 is subnormal in
G and, therefore, G is p-closed.

IfP has exactly one non-cyclic maximal subgroupP1, then eitherP D hai�hbi
with jaj > p, jbj D p, or P 'MpnC1 , by Lemma 2.3. If p > 2, then G is p-nil-
potent by [7, IV.5.10]. If p D 2, then G is 2-nilpotent by [7, IV.3.5, IV.2.7].

The remaining case is when all the maximal subgroups of P are cyclic. In this
case, by Lemma 2.1, either P ' Ep2 or P is a quaternion group of order 8.

If p > 2, then G is p-nilpotent by [7, IV.2.7].
Therefore p D 2 andP is either elementary abelian of order 4, or the quaternion

group of order 8, and 3 divides jGj; see [7, IV.2.7, IV.5.10].

Let G be a group, p 2 �.G/ and P be a Sylow p-subgroup of G. If every non-
cyclic maximal subgroup of P is subnormal in G, then G is called an srp-group.

Lemma 2.5. If G is an srp-group, H is a subgroup of G and N is normal in G,
then H and G=N are srp-groups.

Proof. Let P1 be a Sylow subgroup of H and P be a Sylow subgroup of G such
that P1 � P . Suppose that M is a maximal subgroup of P1, and assume that M
is not cyclic. Then M is subnormal G and therefore also in H .

Let P be a Sylow p-subgroup of G and M=N be an arbitrary maximal sub-
group of PN=N . Then there exists a subgroupK of P such thatKN=N DM=N .
Assume thatM=N is not cyclic. ThenK is not cyclic, and soK is subnormal inG.
Therefore M=N is subnormal in G=N . The lemma is proved.

3 Proof the theorem

By Lemma 2.5, the hypotheses of the theorem are inherited by all subgroups and
quotients of G. Thus, to prove the theorem, we need to discuss solvable groups
and groups with S.G/ D 1.
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Assume that S.G/ D 1. Let P be a Sylow 2-subgroup of G. Since G is
an sr2-group and G does not contain subnormal 2-subgroups, it follows that all
maximal subgroups of P are cyclic. If P is cyclic, then G has a normal 2-comple-
ment contrary to S.G/ D 1. Hence, by Lemma 2.1, either P ' E22 , or P ' Q8.
If P ' Q8, then S.G/ ¤ 1 by theZ�-Theorem; see [6, Section 12.1.1]. Hence P
is elementary abelian of order 4.

Let N be minimal normal in G. Then the subgroup N is simple and jG W N j is
odd. By [6, Theorem, p. 485], N ' PSL.2; pn/, p is prime, pn � ˙3 .mod 8/.
Since pn � ˙3 .mod 8/, n is odd.

Let B be a Sylow p-subgroup of N . Then B is elementary abelian of order pn.
Since G is an srp-group and G does not contain subnormal p-subgroups, all the
maximal subgroups ofB are cyclic. By Lemma 2.1,B is either cyclic orB ' Ep2 .
Since n is odd, we have n D 1.

As CG.N / \N D Z.N/ D 1, CG.N / is isomorphic to a subgroup of G=N .
Hence jCG.N /j is odd. Since CG.N / is normal in G and S.G/ D 1, we have
CG.N / D 1. Now G is isomorphic to a subgroup of AutN containing InnN . It is
well known that

Aut PSL.2; p/ D PGL.2; p/; jPGL.2; p/ W PSL.2; p/j D 2:

Thus G D N .
Suppose now that G is solvable. By induction on jGj we have

(1) For all p 2 �.G/, G is not p-closed and G is not p-nilpotent.

The Frattini argument and (1) yield

(2) ˆ.G/ D Z.G/ D 1, F.G/ D CG.F.G// and F.G/ has elementary abelian
Sylow subgroups.

Let P be a Sylow 2-subgroup of G. Combining (1) and Lemma 2.4 gives

(3) P is either elementary abelian of order 4 or is a quaternion group of order 8.

We now show:

(4) For every odd r 2 �.G/, a Sylow r-subgroup R of G is either cyclic or ele-
mentary abelian of order r2, orR D hai�hbi, jaj D r2, jbj D r , orR 'Mr3 .

To this end, letR be non-cyclic and jRj � r3. SinceR is non-normal inG, there is
a unique non-cyclic maximal subgroup R1 of R, by Lemma 2.1. By the condition
of the theorem, it is subnormal in G, hence R1 � F.G/. Now R1 is elementary
abelian. By Lemma 2.3, either R D hai � hbi, jaj > r , jbj D r , or R 'MrnC1 .
If R D hai � hbi, then we have R1 D ha

ri � hbi and jaj D r2. If R 'MrnC1 ,
then R1 D Œha

ri�hbi and jaj D r2.
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(5) H D G20 has an ordered Sylow tower of supersolvable type.

By (4), every Sylow subgroup of H is metacyclic. Now G has an ordered Sylow
tower of supersolvable type; see [6, 7.6.3] and [8, Corollary of Theorem 2].

(6) G is a ¹2; 3º-group.

Choose r 2 �.H/ maximal. The Sylow r-subgroup R of H is a Sylow r-sub-
group of G and R is normal in H , by (5). It is clear that jG W NG.R/j 2 ¹4; 8º.
If jG W NG.R/j D 8, then P ' Q8. Thus the center of G=O.G/ contains the in-
volution of PO.G/=O.G/ by the Z�-Theorem; see also [6, 12.1.1]. Let hii � P
have order 2. Then hiiO.G/=O.G/ � Z.G=O.G//, hence

.hiiO.G/=O.G//.H=O.G// D hiiH=O.G/

is a subgroup of G=O.G/. But now H is normal in hiiH and NG.R/ � hiiH .
Therefore jG W NG.R/j ¤ 8, which is a contradiction. Hence jG W NG.R/j D 4

and r D 3 by Sylow’s theorem.

(7) End of proof.

Suppose that jF.G/j is even. Then the Sylow 2-subgroup F2 of F.G/ is elemen-
tary abelian and nontrivial. Since F2 � P and F2 ¤ P , by (1), it follows that
jF2j D 2 and F2 � Z.G/, this contradicts (2). Therefore the assumption is false,
andF.G/ D O3.G/. By (4), we find that jF.G/j D 3 or 9. By (2),F.G/ coincides
with its centralizer. Hence G=F.G/ is isomorphic to a subgroup of AutF.G/.
If jF.G/j D 3, then jG=F.G/j D 2 and G is supersolvable. Thus jF.G/j D 32.
Since ˆ.G/ D 1, there is a subgroup M of G such that G D ŒF .G/�M . Now, for
a Sylow 3-subgroup R, we have R D ŒF .G/�.R \M/. But this is impossible in
the metacyclic group R of order 33.
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