Finite groups with subnormal non-cyclic subgroups

Victor Monakhov and Alexander Trofimuk

Communicated by Robert M. Guralnick

Abstract. In this paper we consider finite groups G such that every non-cyclic maximal subgroup in its Sylow subgroups is subnormal in G. In particular, we prove that such solvable groups have an ordered Sylow tower.

1 Introduction

All groups considered in this paper will be finite. Our notation is standard and taken mainly from [7].

We say that G has a Sylow tower if there exists a normal series with each factor isomorphic to a Sylow subgroup of G.

Let *G* be a group of order $p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$, where $p_1 > p_2 > \dots > p_k$. We say that *G* has an ordered Sylow tower of supersolvable type if there exists a series

 $1 = G_0 \subseteq G_1 \subseteq G_2 \subseteq \cdots \subseteq G_{k-1} \subseteq G_k = G$

of normal subgroups of G such that G_i/G_{i-1} is isomorphic to a Sylow p_i -subgroup of G for each i = 1, 2, ..., k.

Recall that a supersolvable group is a group which has a normal series with cyclic factors. If G is supersolvable, then G has an ordered Sylow tower of supersolvable type; see [7, VI.9.1]. The alternating group A_4 of degree 4 has a Sylow tower of non-supersolvable type.

By the Zassenhaus Theorem [7, IV.2.11], a group G with cyclic Sylow subgroups has a normal cyclic Hall subgroup such that the corresponding quotient group is also cyclic. Hence G is supersolvable.

In 1980 Srinivasan [9, Theorem 1] proved that if all maximal subgroups of the Sylow subgroups of G are normal in G, then G is supersolvable.

If the condition of normality is weakened to subnormality, then the group can be non-supersolvable. An example is the alternating group A_4 of degree 4. However, Srinivasan [9, Theorem 3] has proved that G has an ordered Sylow tower if all maximal subgroups of its Sylow subgroups are subnormal in G. The paper [9] found an echo in many papers; see [1–4].

Developing this theme we prove the following theorem.

Theorem 1.1. Let G be a group. Assume that for all Sylow subgroups P of G and for all maximal subgroups M of P, if M is not cyclic, then M is subnormal in G. Then S(G) has a Sylow tower and, if G is non-solvable, then

$$G/S(G) \simeq \text{PSL}(2, p),$$

p is prime, $p \equiv \pm 3 \pmod{8}$.

Here S(G) is a largest normal solvable subgroup of G.

2 Auxiliary results

Let *G* be a group and $\pi(G)$ be the set of primes dividing the order of *G*. Let *p* be a prime and *G* be a *p*-group. We also use the notation $\Omega_1(G) = \langle g \in G | g^p = 1 \rangle$. The center, the derived subgroup, the Frattini subgroup and the Fitting subgroup of *G* are denoted by Z(G), G', $\Phi(G)$ and F(G), respectively. By $O_p(G)$ and O(G) we denote the greatest normal *p*-subgroup of *G* and the greatest normal subgroup of odd order of *G*, respectively. The notation G = [A]B is used for a semidirect product with a normal subgroup *A*.

Lemma 2.1. Let P be a non-cyclic p-group and assume that all the proper subgroups of P are cyclic. Then P is either elementary abelian of order p^2 or a quaternion group of order 8.

Proof. Let $x \in Z(P)$ have order p. If there is a subgroup $\langle y \rangle$ of order p, different from $\langle x \rangle$, then $\langle x \rangle \langle y \rangle = \langle x \rangle \times \langle y \rangle$ is non-cyclic of order p^2 and so $P = \langle x \rangle \times \langle y \rangle$ is elementary abelian. If P has a unique subgroup of order p, then, by [7, III.8.2], P is a quaternion group of order 2^n , $n \ge 3$. Since all the subgroups of P are cyclic, it follows from [7, III.7.12] that P has the order 8.

Lemma 2.2 ([5, Theorem 1.2]). Let G be a non-abelian p-group of order p^{n+1} with cyclic subgroup $A = \langle a \rangle$ of index p. Then G is isomorphic to one of the following groups:

- (1) $M_{p^{n+1}} = \langle a, b \mid a^{p^n} = b^p = 1, a^b = a^{1+p^{n-1}} \rangle$, where $n \ge 3$ if p = 2. In that case, $|G'| = p, Z(G) = \Phi(G), |\Omega_1(G)| = p^2$.
- (2) p = 2 and $D_{2^{n+1}} = \langle a, b | a^{2^n} = b^2 = 1$, $bab = a^{-1} \rangle$, the dihedral group. *All elements in* $G \setminus \langle a \rangle$ *are involutions.*
- (3) p = 2 and $Q_{2^{n+1}} = \langle a, b | a^{2^n} = 1, b^2 = a^{2^{n-1}}, a^b = a^{-1} \rangle$, the generalized quaternion group. The group G contains exactly one involution, all elements in $G \setminus \langle a \rangle$ have order 4 and, if n > 2, G/Z(G) is dihedral.

(4) p = 2 and $SD_{2^{n+1}} = \langle a, b | a^{2^n} = b^2 = 1$, $bab = a^{-1+2^{n-1}} \rangle$, n > 2, the semidihedral group. We have $\Omega_1(G) = \langle a^2, b \rangle \simeq D_{2^n}$, $\langle a^2, ab \rangle \simeq Q_{2^n}$ so the maximal subgroups of G are characteristic in G, G/Z(G) is dihedral.

In cases (2)–(4), we have |G:G'| = 4, |Z(G)| = 2.

For the remainder of this paper, we use the notation $M_{p^{n+1}}$, $D_{2^{n+1}}$, $Q_{2^{n+1}}$ and $SD_{2^{n+1}}$ for the groups listed in Lemma 2.2. By E_{p^n} we denote an elementary abelian group of order p^n .

Lemma 2.3. Let P be a p-group and assume that P contains exactly one noncyclic maximal subgroup. Then either $P = \langle a \rangle \times \langle b \rangle$ with |a| > p and |b| = p, or $P \simeq M_{p^{n+1}}$, where $n \ge 2$ if p > 2, and $n \ge 3$ if p = 2.

Proof. Assume that $|P| = p^{n+1}$ and that H is a non-cyclic maximal subgroup of P. Since P is not cyclic, there exists a maximal subgroup A of P with $A \neq H$. By hypothesis, A is cyclic. Let $A = \langle a \rangle$ and $b \in P \setminus A$. Then $P = \langle a \rangle \langle b \rangle$ and $|P/\Phi(P)| = p^2$; see [7, III.3.15]. Hence P has 1 + p maximal subgroups.

If P is abelian, then $P = \langle a \rangle \times \langle b \rangle$ for some $b \in P \setminus A$ and |a| > p as $n \ge 2$. Now P has the following subgroups: p cyclic maximal subgroups $\langle a \rangle$, $\langle ab \rangle$, $\langle a^{2}b \rangle, \ldots, \langle a^{p-1}b \rangle$ and one non-cyclic $H = \langle a^{p} \rangle \times \langle b \rangle$.

Let P be non-abelian and p > 2. By Lemma 2.2, P is isomorphic to $M_{p^{n+1}}$, and so contains one non-cyclic maximal subgroup $H = [\langle a^p \rangle] \langle b \rangle$, and p cyclic subgroups of index p; see [7, III.8.7]. Hence $M_{p^{n+1}}$ satisfies the requirements of the lemma if p > 2.

Let *P* be non-abelian and p = 2. By Lemma 2.2, there are four non-abelian 2-groups with cyclic maximal subgroup: $M_{2^{n+1}}$, $D_{2^{n+1}}$, $Q_{2^{n+1}}$ and $SD_{2^{n+1}}$.

The group $M_{2^{n+1}}$ contains two cyclic maximal subgroups $\langle a \rangle$ and $\langle ab \rangle$, and one non-cyclic $H = [\langle a^2 \rangle] \langle b \rangle$. Hence $M_{2^{n+1}}$ satisfies the condition of the lemma.

The group $D_{2^{n+1}}$ contains two non-cyclic maximal subgroups $[\langle a^2 \rangle] \langle b \rangle$ and $[\langle a^2 \rangle] \langle ab \rangle$, hence $D_{2^{n+1}}$ does not satisfy the condition of the lemma.

All three maximal subgroups of Q_8 are cyclic. The group $Q_{2^{n+1}}$ contains two non-cyclic maximal subgroups $\langle a^2 \rangle \langle b \rangle$ and $\langle a^2 \rangle \langle ab \rangle$ if $n \ge 3$. Hence Q_8 and $Q_{2^{n+1}}$, $n \ge 3$, does not satisfy the condition of the lemma.

The group $SD_{2^{n+1}}$ contains two non-cyclic maximal subgroups D_{2^n} and Q_{2^n} and one cyclic maximal subgroup. Hence SD_{2^n} does not satisfy the condition of the lemma. The lemma is proved.

A group is called *p*-closed if it has a normal Sylow *p*-subgroup. A group is called *p*-nilpotent if it has a normal *p*-complement.

Lemma 2.4. Let *p* be the smallest prime dividing the order of G and let P be a Sylow p-subgroup of G. Suppose that every non-cyclic maximal subgroup of P is

subnormal in G. If G is not p-closed and is not p-nilpotent, then p = 2, 3 divides the order of G, and P is either the elementary abelian group of order 4 or the quaternion group of order 8.

Proof. Note that for p > 2 the order of G is odd and coprime with $p^2 - 1$. Indeed, if q divides |G| and q divides $p^2 - 1 = (p - 1)(p + 1)$, then q > p and q divides p + 1. But this is possible only when p = 2 and q = 3; this is a contradiction.

If *P* is cyclic, then *G* is *p*-nilpotent by [7, IV.2.8].

If P has two non-cyclic maximal subgroups P_1 and P_2 , then, by the hypothesis of the lemma, P_1 and P_2 are subnormal in G, hence $P = P_1P_2$ is subnormal in G and, therefore, G is p-closed.

If P has exactly one non-cyclic maximal subgroup P_1 , then either $P = \langle a \rangle \times \langle b \rangle$ with |a| > p, |b| = p, or $P \simeq M_{p^{n+1}}$, by Lemma 2.3. If p > 2, then G is p-nilpotent by [7, IV.5.10]. If p = 2, then G is 2-nilpotent by [7, IV.3.5, IV.2.7].

The remaining case is when all the maximal subgroups of P are cyclic. In this case, by Lemma 2.1, either $P \simeq E_{p^2}$ or P is a quaternion group of order 8.

If p > 2, then G is p-nilpotent by [7, IV.2.7].

Therefore p = 2 and P is either elementary abelian of order 4, or the quaternion group of order 8, and 3 divides |G|; see [7, IV.2.7, IV.5.10].

Let G be a group, $p \in \pi(G)$ and P be a Sylow p-subgroup of G. If every noncyclic maximal subgroup of P is subnormal in G, then G is called an sr_p -group.

Lemma 2.5. If G is an sr_p -group, H is a subgroup of G and N is normal in G, then H and G/N are sr_p -groups.

Proof. Let P_1 be a Sylow subgroup of H and P be a Sylow subgroup of G such that $P_1 \subseteq P$. Suppose that M is a maximal subgroup of P_1 , and assume that M is not cyclic. Then M is subnormal G and therefore also in H.

Let *P* be a Sylow *p*-subgroup of *G* and M/N be an arbitrary maximal subgroup of PN/N. Then there exists a subgroup *K* of *P* such that KN/N = M/N. Assume that M/N is not cyclic. Then *K* is not cyclic, and so *K* is subnormal in *G*. Therefore M/N is subnormal in G/N. The lemma is proved.

3 Proof the theorem

By Lemma 2.5, the hypotheses of the theorem are inherited by all subgroups and quotients of *G*. Thus, to prove the theorem, we need to discuss solvable groups and groups with S(G) = 1.

Assume that S(G) = 1. Let *P* be a Sylow 2-subgroup of *G*. Since *G* is an *sr*₂-group and *G* does not contain subnormal 2-subgroups, it follows that all maximal subgroups of *P* are cyclic. If *P* is cyclic, then *G* has a normal 2-complement contrary to S(G) = 1. Hence, by Lemma 2.1, either $P \simeq E_{2^2}$, or $P \simeq Q_8$. If $P \simeq Q_8$, then $S(G) \neq 1$ by the Z*-Theorem; see [6, Section 12.1.1]. Hence *P* is elementary abelian of order 4.

Let N be minimal normal in G. Then the subgroup N is simple and |G:N| is odd. By [6, Theorem, p. 485], $N \simeq PSL(2, p^n)$, p is prime, $p^n \equiv \pm 3 \pmod{8}$. Since $p^n \equiv \pm 3 \pmod{8}$, n is odd.

Let *B* be a Sylow *p*-subgroup of *N*. Then *B* is elementary abelian of order p^n . Since *G* is an sr_p -group and *G* does not contain subnormal *p*-subgroups, all the maximal subgroups of *B* are cyclic. By Lemma 2.1, *B* is either cyclic or $B \simeq E_{p^2}$. Since *n* is odd, we have n = 1.

As $C_G(N) \cap N = Z(N) = 1$, $C_G(N)$ is isomorphic to a subgroup of G/N. Hence $|C_G(N)|$ is odd. Since $C_G(N)$ is normal in G and S(G) = 1, we have $C_G(N) = 1$. Now G is isomorphic to a subgroup of Aut N containing Inn N. It is well known that

Aut
$$PSL(2, p) = PGL(2, p), |PGL(2, p) : PSL(2, p)| = 2.$$

Thus G = N.

Suppose now that G is solvable. By induction on |G| we have

(1) For all $p \in \pi(G)$, G is not p-closed and G is not p-nilpotent.

The Frattini argument and (1) yield

(2) $\Phi(G) = Z(G) = 1$, $F(G) = C_G(F(G))$ and F(G) has elementary abelian Sylow subgroups.

Let P be a Sylow 2-subgroup of G. Combining (1) and Lemma 2.4 gives

(3) *P* is either elementary abelian of order 4 or is a quaternion group of order 8.

We now show:

(4) For every odd $r \in \pi(G)$, a Sylow *r*-subgroup *R* of *G* is either cyclic or elementary abelian of order r^2 , or $R = \langle a \rangle \times \langle b \rangle$, $|a| = r^2$, |b| = r, or $R \simeq M_{r^3}$.

To this end, let *R* be non-cyclic and $|R| \ge r^3$. Since *R* is non-normal in *G*, there is a unique non-cyclic maximal subgroup R_1 of *R*, by Lemma 2.1. By the condition of the theorem, it is subnormal in *G*, hence $R_1 \subseteq F(G)$. Now R_1 is elementary abelian. By Lemma 2.3, either $R = \langle a \rangle \times \langle b \rangle$, |a| > r, |b| = r, or $R \simeq M_{r^{n+1}}$. If $R = \langle a \rangle \times \langle b \rangle$, then we have $R_1 = \langle a^r \rangle \times \langle b \rangle$ and $|a| = r^2$. If $R \simeq M_{r^{n+1}}$, then $R_1 = [\langle a^r \rangle] \langle b \rangle$ and $|a| = r^2$. (5) $H = G_{2'}$ has an ordered Sylow tower of supersolvable type.

By (4), every Sylow subgroup of H is metacyclic. Now G has an ordered Sylow tower of supersolvable type; see [6, 7.6.3] and [8, Corollary of Theorem 2].

(6) *G* is a $\{2, 3\}$ -group.

Choose $r \in \pi(H)$ maximal. The Sylow *r*-subgroup *R* of *H* is a Sylow *r*-subgroup of *G* and *R* is normal in *H*, by (5). It is clear that $|G : N_G(R)| \in \{4, 8\}$. If $|G : N_G(R)| = 8$, then $P \simeq Q_8$. Thus the center of G/O(G) contains the involution of PO(G)/O(G) by the Z*-Theorem; see also [6, 12.1.1]. Let $\langle i \rangle \leq P$ have order 2. Then $\langle i \rangle O(G)/O(G) \subseteq Z(G/O(G))$, hence

$$(\langle i \rangle O(G) / O(G))(H / O(G)) = \langle i \rangle H / O(G)$$

is a subgroup of G/O(G). But now H is normal in $\langle i \rangle H$ and $N_G(R) \supseteq \langle i \rangle H$. Therefore $|G : N_G(R)| \neq 8$, which is a contradiction. Hence $|G : N_G(R)| = 4$ and r = 3 by Sylow's theorem.

(7) End of proof.

Suppose that |F(G)| is even. Then the Sylow 2-subgroup F_2 of F(G) is elementary abelian and nontrivial. Since $F_2 \subseteq P$ and $F_2 \neq P$, by (1), it follows that $|F_2| = 2$ and $F_2 \subseteq Z(G)$, this contradicts (2). Therefore the assumption is false, and $F(G) = O_3(G)$. By (4), we find that |F(G)| = 3 or 9. By (2), F(G) coincides with its centralizer. Hence G/F(G) is isomorphic to a subgroup of Aut F(G). If |F(G)| = 3, then |G/F(G)| = 2 and G is supersolvable. Thus $|F(G)| = 3^2$. Since $\Phi(G) = 1$, there is a subgroup M of G such that G = [F(G)]M. Now, for a Sylow 3-subgroup R, we have $R = [F(G)](R \cap M)$. But this is impossible in the metacyclic group R of order 3^3 .

Acknowledgments. The authors wish to thank the referee for his suggestions.

Bibliography

- M. Asaad and A. A. Heliel, On S-quasinormal embedded subgroups of finite groups, J. Pure Appl. Algebra 165 (2001), 129–135.
- [2] M. Asaad, M. Ramadan and A. Shaalan, Influence of π-quasinormality on maximal subgroups of Sylow subgroups of fitting subgroup of a finite group, *Arch. Math.* 56 (1991), 521–527.
- [3] A. Ballester-Bolinches, Permutably embedded subgroups of finite soluble groups, *Arch. Math.* **65** (1995), 1–7.

- [4] A. Ballester-Bolinches and M. C. Pedraza-Aguilera, Sufficient conditions for supersolvability of finite groups, J. Pure Appl. Algebra 127 (1998), 113–118.
- [5] Y. Berkovich, Groups of Prime Power Order, Walter de Gruyter, Berlin, 2008.
- [6] D. Gorenstein, Finite Groups, New York, 1968.
- [7] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- [8] V. S. Monakhov and E. E. Gribovskaya, Maximal and Sylow subgroups of solvable finite groups, *Math. Notes* 70 (2001), no. 4, 545–552.
- [9] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, *Israel J. Math.* 35 (1980), 210–214.

Received April 3, 2013; revised June 2, 2013.

Author information

Victor Monakhov, Department of Mathematics, Gomel Francisk Skorina State University, Sovetskaya str., 104, Gomel, 246019, Belarus. E-mail: victor.monakhov@gmail.com

Alexander Trofimuk, Department of Mathematics, Brest State University named after A. S. Pushkin, Boulevard of Cosmonauts, 21, Brest, 224016, Belarus. E-mail: alexander.trofimuk@gmail.com