УДК 524.354.6-33

В.С. Секержицкий¹, В.В. Герман²

¹канд. физ.-мат. наук, доц., зав. каф. теоретической физики Брестского государственного университета имени А.С. Пушкина ²магистрант физико-математического фак-та Брестского государственного университета имени А.С. Пушкина

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ И ЗАПАСЫ ЯДЕРНОЙ ЭНЕРГИИ В ЭЛЕКТРОННО-НЕЙТРОННО-ЯДЕРНОМ СИЛЬНО ЗАМАГНИЧЕННОМ ВЕЩЕСТВЕ

Рассчитаны равновесные термодинамические и ядерные параметры холодного сверхплотного электронно-нейтронно-ядерного вещества при наличии сверхсильного магнитного поля. Исследовано влияние сверхсильного магнитного поля на параметры, соответствующие границам электронно-нейтронно-ядерной фазы такого вещества. Показано, что в сильном магнитном поле возможно увеличение энергетического выхода процессов перехода от относительно к абсолютно равновесному состоянию холодного электронно-нейтронно-ядерного вещества.

1. Согласно существующим представлениям, при плотностях, меньших ядерной плотности и характерных для оболочек нейтронных звезд и недр белых карликов, должны быть условия для реализации электронно-ядерной (Ae), электронно-нейтронноядерной (Aen) или электронно-нуклонной (enp) фаз сверхплотного крайне вырожденного вещества [1]. В любой из перечисленных фаз одним из компонентов вещества является газ свободных электронов, который при плотностях $\rho > 10^6$ г/см³ является релятивистским; при этом температура его вырождения превышает 10¹⁰ K, что значительно больше предполагаемых температур в недрах указанных астрофизических объектов. В веществе, находящемся в Аеп- и епр-фазах, имеются свободные нерелятивистские нейтроны, а в епр-фазе еще и свободные нерелятивистские протоны. Известно, что сверхплотное вещество может находиться в относительно и абсолютно устойчивых состояниях термодинамического равновесия по отношению к бета-процессам и пикноядерным реакциям [1]. Теоретически обоснованная и подтвержденная наблюдательными данными (по крайней мере, косвенными) возможность существования в сверхплотных звездах весьма сильных магнитных полей делает актуальной задачу об учете их влияния на физические свойства сверхплотного вещества.

В настоящей работе мы проведем вычисление равновесных параметров *Aen*-фазы замагниченного вещества и проведем оценку влияния магнитного поля на энергетический выход процесса перехода вещества от относительно к абсолютно устойчивому состоянию термодинамического равновесия. Следует заметить, что в [2] ставится под сомнение сама возможность существования *Aen*-фазы вещества из-за альтернативного нейтронизации процесса пионизации ядер. Проведенные нами исследования (например, [3]) дают, однако, основание полагать, что сверхсильные магнитные поля подавляют процесс пионизации более интенсивно, чем процесс нейтронизации, приводящий к образованию *Aen*-фазы, и поставленная в настоящей работе задача вполне корректна и актуальна.

При численных расчетах и оценках не будет учитываться зависимость величины магнитного момента нейтрона от индукции магнитного поля; не будет учитываться также малая величина аномального магнитного момента электрона.

2. Представим энергию электронно-нейтронно-ядерного вещества в виде суммы энергий ядер, электронов и свободных нейтронов:

 $\Phi I3IKA$ 49

$$E = E_A + E_a + E_n; (1)$$

при этом мы пренебрегаем кинетической энергией ядер и считаем, что электроны образуют крайне вырожденный идеальный газ. Числа частиц компонентов вещества связаны соотношением:

$$N = N_n + AN_A = N_n + \frac{A}{Z}N_e, \tag{2}$$

где N, N_A, N_n, N_e — соответственно числа всех нуклонов, ядер, свободных нейтронов и электронов в объеме V рассматриваемой электронейтральной среды, A и Z— массовое и зарядовое числа ядра. Концентрация всех нуклонов связана с концентрациями компонентов среды и ядерными параметрами соотношением:

$$n = n_n \frac{n_0 - n}{n_0 - n_n} + n_e \frac{A}{Z},\tag{3}$$

где $n_0 = 1,3 \cdot 10^{38} \text{ см}^{-3}$ – концентрация нуклонов в ядре.

Энергию покоя ядра будем вычислять с помощью модифицированной следующим образом формулы Бете – Вайцзеккера:

$$Mc^2 = (A - Z)m_n c^2 + Zm_p c^2 + W$$
, (4)

$$W = -c_0 A + c_1 A^{2/3} + c_2 \frac{Z^2}{A^{1/3}} \left(1 - \frac{3n_A^{1/3}}{2n_0^{1/3}} \right) + c_3 A \left(1 - \frac{2Z}{A} \right)^2 + c_4 A \left(1 - \frac{2Z}{A} \right)^4 + c_5 B^2 Z A^{2/3}.$$
 (5)

Здесь m_n и m_p — массы нейтрона и протона, W — энергия связи ядра, B — индукция магнитного поля; c_0 = 15,75 МэВ, c_1 = 17,8 МэВ, c_2 = 0,71 МэВ, c_3 = 23,7 МэВ (значения взяты из [1]), c_4 = 7,7 МэВ [4], c_5 = 6,9·10⁻³⁸ МэВ/Гс² [5]. Заметим, что в [6] при решении аналогичной задачи при B = 0 с использованием модели невзаимодействующих свободных нейтронов берется c_4 = $c_3/27 \approx 0,878$ МэВ. Поправка в третьем слагаемом (5) связана с учетом кулоновского взаимодействия протонов ядра с окружающими ядрами (так называемая «кулоновская энергия решетки» [7]).

Энергия свободных нейтронов и их число в объеме V равны [4]

$$E_n = w_n \left(V - \frac{AN_A}{n_0} \right), \quad N_n = n_n \left(V - \frac{AN_A}{n_0} \right), \tag{6}$$

где (например, [8], где имеются ссылки на соответствующие оригинальные работы)

$$w_n = n_n \left(m_n c^2 + \zeta_n \right) - P_n, \tag{7}$$

$$n_n = \frac{\left(2m_n\right)^{3/2}}{6\pi^2\hbar^3} \left(\left(\zeta_n - \varepsilon_{\mathcal{A}} + \sigma_n \mu_{\mathcal{A}} B\right)^{3/2} + \left(\zeta_n - \varepsilon_{\mathcal{A}} - \sigma_n \mu_{\mathcal{A}} B\right)^{3/2} \right),\tag{8}$$

$$P_{n} = \frac{2}{5} n_{n} \frac{\left(\zeta_{n} - \varepsilon_{\mathcal{A}} + \sigma_{n} \mu_{\mathcal{A}} B\right)^{5/2} + \left(\zeta_{n} - \varepsilon_{\mathcal{A}} - \sigma_{n} \mu_{\mathcal{A}} B\right)^{5/2}}{\left(\zeta_{n} - \varepsilon_{\mathcal{A}} + \sigma_{n} \mu_{\mathcal{A}} B\right)^{3/2} + \left(\zeta_{n} - \varepsilon_{\mathcal{A}} - \sigma_{n} \mu_{\mathcal{A}} B\right)^{3/2}},\tag{9}$$

$$\varepsilon_{\mathcal{A}} = -1,48 \cdot 10^{-38} n_n \frac{40,4 - 1,61 \cdot 10^{-38} n_n}{1 + 6,25 \cdot 10^{-13} n_n^{1/3}} \text{ M}_{2}B,$$
 (10)

 n_n и P_n — концентрация и давление свободных нейтронов, $\chi_n = \zeta_n + m_n c^2$ — их химический потенциал, μ_g — ядерный магнетон, $\sigma_n = 1,913$.

Энергия ультрарелятивистского электронного газа в сверхсильном магнитном поле определяется следующим образом [9]:

$$E_e = w_e V$$
, $w_e = \frac{\pi^2 \hbar^3 c n_e^2}{2m_e \mu_B B} = P_e = \frac{1}{2} \chi_e n_e$, (11)

где n_e, P_e, χ_e — концентрация, давление и химический потенциал электронов, m_e — масса электрона, μ_B — магнетон Бора.

Относительно и абсолютно устойчивым состояниям термодинамического равновесия соответствуют минимумы энергии среды E относительно независимых параметров при фиксированных N и B:

$$\frac{\partial E}{\partial Z} = \frac{\partial E}{\partial N_A} = 0; \qquad \frac{\partial E}{\partial A} = \frac{\partial E}{\partial Z} = \frac{\partial E}{\partial N_A} = 0.$$
 (12)

Таким образом, имеем системы уравнений, которые позволяют выразить химические потенциалы электронного и нейтронного газов в относительно устойчивом состоянии:

$$\chi_{e} = \frac{\partial w_{e}}{\partial n_{e}} = m_{n}c^{2} - m_{p}c^{2} + 4c_{3} - \frac{2Z}{A} \left(4c_{3} + c_{2}A^{2/3} \left(2J - 1 \right) \right) + 8c_{4} \left(1 - \frac{2Z}{A} \right)^{3} - c_{5}B^{2}A^{2/3}, \quad (13)$$

$$\chi_{n} = \frac{\partial w_{n}}{\partial n_{n}}, \quad \frac{\partial w_{n}}{\partial n_{n}} - \left(\frac{\partial w_{n}}{\partial n_{n}} - \frac{w_{n}}{n_{n}} \right) \frac{n_{n}}{n_{0}} =$$

$$= m_{n}c^{2} + c_{3} - c_{0} - \frac{Z^{2}}{A^{2}} \left(4c_{3} + c_{2}A^{2/3} \frac{4J - 1}{3} \right) + c_{4} \left(1 - \frac{2Z}{A} \right)^{3} \left(1 + \frac{6Z}{A} \right), \quad (14)$$

а в абсолютно устойчивом состоянии позволяют установить однозначное соответствие между массовым числом A и зарядовым числом Z наиболее устойчивого ядра при фиксированном значении индукции магнитного поля B:

$$Z = \sqrt{\frac{c_1 A}{2c_2 J} + \frac{c_5^2 B^4 A^2}{4c_2^2 J^2}} - \frac{c_5 B^2 A}{2c_2 J}, \qquad J = 1 - \frac{3n_A^{1/3}}{4n_0^{1/3}}.$$
 (15)

Полученные соотношения дают возможность, задавая значения B и n=N/V (или значение массовой плотности $\rho \approx m_n n$ вместо концентрации нуклонов n), вычислять равновесные термодинамические и ядерные параметры электронно-нейтронно-ядерного и электронно-ядерного замагниченного вещества (в последнем случае применимы все приведенные выше формулы при условии $n_n=0$). Порог развала ядер и образования сплошной ядерной материи (электронно-нуклонной enp-фазы) можно оценить из условия равенства нулю энергии связи ядра.

Численные оценки показывают, что в сверхсильном магнитном поле границы электронно-нейтронно-ядерной фазы относительно и абсолютно равновесного вещества смещаются в сторону более высоких плотностей, и заметно изменяются пороговые значения термодинамических и ядерных параметров вещества. В таблицах 1 и 2 представлены результаты расчетов значений массового числа A наиболее устойчивого ядра, зарядового числа Z, модуля удельной энергии связи ядра b, химического потенциала

 Φ I3IKA 51

 $4.1 \cdot 10^{36}$

 $1.1 \cdot 10^{36}$

 $1.0 \cdot 10^{39}$

 $1.8 \cdot 10^{12}$

 $5.7 \cdot 10^{36}$

 $1.5 \cdot 10^{36}$

 $1.4 \cdot 10^{39}$

 $2.6 \cdot 10^{12}$

 $B = 6.10^{17} \, \Gamma c$ B = 0 $B = 2.10^{17} \, \Gamma c$ $B = 4.10^{17} \, \Gamma c$ Параметры 112 110 105 97 A33 Z 37 37 36 7,52 b, M \ni B 7,53 7,49 7,44 23,7 23,4 23,0 χ_e , МэВ 23,8 $5,4\cdot10^{35}$ n_e , cm⁻³ $5,9.10^{34}$ $1.8 \cdot 10^{35}$ $3.6 \cdot 10^{35}$ $1,1\cdot 10^{36}$ w_e , МэВ/см³ $2.2 \cdot 10^{36}$ $4.1 \cdot 10^{36}$ $5.7 \cdot 10^{36}$

 $2.2 \cdot 10^{36}$

 $5.5 \cdot 10^{35}$

 $5.1 \cdot 10^{38}$

 $9.2 \cdot 10^{11}$

 $3.5 \cdot 10^{36}$

 $1.8 \cdot 10^{35}$

 $1.7 \cdot 10^{38}$

 $2.9 \cdot 10^{11}$

 \overline{P}_e , МэВ/см³

n, cm⁻³

w, M₃B/cm³

 ρ , Γ/cm^3

Таблица 1. – Параметры абсолютно равновесного вещества у нижнего порога Аеп-фазы

т с о п	_			4 1
Таблица / — Парамет	пы арсопитно	равновесного вещества	v renyhero no	n∩га <i>Арп</i> -тазы
Tuominga 2. Trapamer	pbi docomorno	publicaccinor o acimecina.	y beparier o no	poru rich quibi

Параметры	B = 0	$B = 2 \cdot 10^{17} \Gamma \text{c}$	$B = 4.10^{17} \Gamma c$	$B = 6.10^{17} \Gamma c$
A	469	456	421	372
Z	77	75	69	62
χ_e , МэВ	69,9	69,7	69,5	69,1
n_e , cm ⁻³	$1,5\cdot 10^{36}$	$5,4\cdot10^{35}$	$1,1\cdot 10^{36}$	$1,6\cdot10^{36}$
w_e , M \ni B/c 3	$7.8 \cdot 10^{37}$	$1,9 \cdot 10^{37}$	$3.8 \cdot 10^{37}$	5,6·10 ³⁷
P_e , МэВ/см ³	$2,6\cdot10^{37}$	$1,9 \cdot 10^{37}$	$3.8 \cdot 10^{37}$	$5,6\cdot10^{37}$
n_n , cm ⁻³	$2,9 \cdot 10^{37}$	$2,9 \cdot 10^{37}$	$3,0\cdot10^{37}$	$3,1\cdot 10^{37}$
w_n , M \ni B/c \mathbf{m}^3	$2,7 \cdot 10^{40}$	$2,8\cdot10^{40}$	$2,8 \cdot 10^{40}$	$2,9 \cdot 10^{40}$
P_n , МэВ/см ³	$2,2\cdot10^{38}$	$2,2\cdot10^{38}$	$2,3\cdot10^{38}$	$2,5\cdot 10^{38}$
n, cm ⁻³	$3,6\cdot10^{37}$	$3,2\cdot 10^{37}$	$3,5\cdot 10^{37}$	$3,8\cdot10^{37}$
w, MэB/cм ³	$3,6\cdot10^{40}$	$3,1\cdot 10^{40}$	$3,5\cdot 10^{40}$	$3,9 \cdot 10^{40}$
P, МэВ/см ³	$2,4\cdot10^{38}$	$2,4\cdot10^{38}$	$2,7\cdot10^{38}$	$3,1\cdot 10^{38}$
ρ , Γ /cm ³	$6,0\cdot10^{13}$	$5,3\cdot10^{13}$	5,9·10 ¹³	$6,4\cdot10^{13}$

электронов χ_e , концентраций n_e , n_n , n соответственно электронов, свободных нейтронов и всех нуклонов вещества, давлений P_e , P_n и P, плотностей энергии w_e , w_n и w, массовой плотности ρ для фиксированных значений индукции магнитного поля B. Заметим, что учет кулоновского взаимодействия мало влияет на значения равновесных параметров электронно-нейтронно-ядерного вещества.

3. Приведенные выше соотношения позволяют оценить влияние сверхсильного магнитного поля на запасы ядерной энергии в холодном сверхплотном веществе, выделяемой в процессе перехода от относительно к абсолютно устойчивому состоянию.

На рисунке 1 представлены результаты расчетов величины $\Delta \varepsilon = (w_{omn} - w_{a\delta c})/n$ в зависимости от плотности вещества ρ при B=0 и $B={\rm const}>B^{(e)}$, где $B^{(e)}$ — нижняя граница сверхсильного магнитного поля для ультрарелятивистских электронов, w_{omn} и $w_{a\delta c}$ — плотности энергии среды соответственно в относительно и абсолютно устойчивых состояниях. При этом рассматриваются значения массовой плотности в окрестностях порога перехода фаз $Ae{\rightarrow}Aen$. Выбранный диапазон плотностей сравнительно невелик, что позволяет пренебречь имеющейся в реальных астрофизических объектах возможностью изменения индукции магнитного поля в веществе с изменением плотно-

сти и проводить расчеты для случая постоянного поля. При более высоких плотностях рассматриваемые магнитные поля не являются сверхсильными для электронов, при меньших плотностях данные значения $B>2c\sqrt{2\pi\rho}$, что вряд ли возможно в реальных астрофизических объектах. Для относительно равновесного состояния вещества принято A=64.

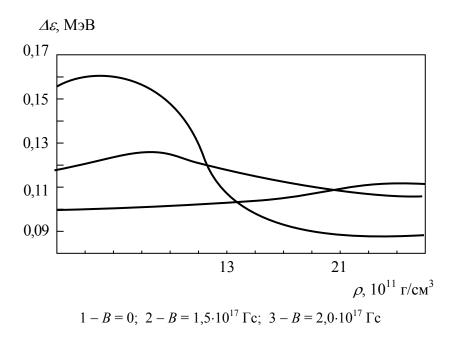


Рисунок 1. — Зависимость величины запасов ядерной энергии в расчете на один нуклон от массовой плотности для *Ae*- и *Aen*-фаз холодного сверхплотного вещества

В Ae-фазе сверхсильное магнитное поле уменьшает величину $\Delta \varepsilon$ при любых значениях ρ . Препятствуя образованию свободных нейтронов и смещая порог перехода фаз $Ae \rightarrow Aen$ в сторону более высоких плотностей, сверхсильное магнитное поле в Aen-фазе при заданном значении массовой плотности может увеличивать энергетический выход пикноядерных реакций.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Саакян, Γ . С. Равновесные конфигурации вырожденных газовых масс / Γ . С. Саакян. М. : Наука, 1972. 344 с. : ил.
- 2. Саакян, Г. С. Физика нейтронных звезд / Г. С. Саакян. Дубна : Изд-во ОИЯИ, 1995. 347 с.
- 3. Секержицкий, В. С. О влиянии магнитного поля на пионизацию ядер / В. С. Секержицкий // Весн. Брэсц. ун-та. Сер. 4. Фізіка. Матэматыка. 2010. № 2. С 39—44
- 4. Саакян, Г. С. Явление пионизации вырожденного вещества / Г. С. Саакян, Л. Ш. Григорян // Астрофизика. 1977. Т. 13, вып. 2. С. 295–311.
- 5. Леинсон, Л. Б. О делении ядер в сильном магнитном поле / Л. Б. Леинсон, В. Н. Ораевский // Ядерная физика. 1978. Т. 27, вып. 6. С. 1457—1463.
- 6. Вартанян, Ю. Л. Нейтронобогатые ядра в Ферми-газе / Ю. Л. Вартанян, Н. К. Овакимова // Астрономический журнал. 1972. Т. 49, вып. 2. С. 306–315.

 $\Phi I3IKA$ 53

- 7. Володин, В. А. Влияние кристаллической решетки на ядерные свойства сверхплотного вещества / В. А. Володин, Д. А. Киржниц // Письма в журнал экспериментальной и теоретической физики. 1971. Т. 13, № 8. С. 450—452.
- 8. Секержицкий, В. С. Равновесные системы фермионов и бозонов в магнитных полях / В. С. Секержицкий. Брест : Изд-во БрГУ, 2008. 198 с.
- 9. Шульман, Γ . А. О свойствах холодного плотного вещества с вмороженным сверхсильным магнитным полем / Γ . А. Шульман // Астрофизика. 1975. Т. 11, вып. 1. С. 89—95.

Рукапіс паступіў у рэдкалегію 02.03.2015

${\it Sekerzhitsky~V.S.,~German~V.V.}~ Thermodynamics~ Balance~ and~ Reserves~ of~ Nuclear~ Energy~ in~ Electron-Neutron-Nuclear~ Strong~ Magnetized~ Matter~ \\$

We have calculated the equilibrium thermodynamic and nuclear parameters of cold superdense electron-neutron-nuclear matter during superstrong magnetic field. Influence of a superstrong magnetic field on parameters that correspond to bounds of electron-neutron-nuclear phase of such matter is investigated. In strong magnetic field may be increase energy exit of processes crossing from relatively to absolute balance state of cold electron-neutron-nuclear matter is show.